sh run_sequence_labeling.sh ${data_dir}/${model}${conf_dir}/${model}_tag.dict ${ckpt_dir}/${model}${pred_data}${learning_rate}${is_train}${max_seq_len}${batch_size}${epoch}${pred_save_path}
}
if[${process_name}== data_prepare ];then
echo-e"\nstart ${dataset_name} data prepare"
python duee_1_data_prepare.py
echo-e"end ${dataset_name} data prepare"
elif[${process_name}== trigger_train ];then
echo-e"\nstart ${dataset_name} trigger train"
run_sequence_labeling_model trigger True
echo-e"end ${dataset_name} trigger train"
elif[${process_name}== trigger_predict ];then
echo-e"\nstart ${dataset_name} trigger predict"
run_sequence_labeling_model trigger False
echo-e"end ${dataset_name} trigger predict"
elif[${process_name}== role_train ];then
echo-e"\nstart ${dataset_name} role train"
run_sequence_labeling_model role True
echo-e"end ${dataset_name} role train"
elif[${process_name}== role_predict ];then
echo-e"\nstart ${dataset_name} role predict"
run_sequence_labeling_model role False
echo-e"end ${dataset_name} role predict"
elif[${process_name}== pred_2_submit ];then
echo-e"\nstart ${dataset_name} predict data merge to submit fotmat"