策略4:增加股票多样性的QP策略.ipynb 9.42 KB
Newer Older
20201219012 committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# 本代码由可视化策略环境自动生成 2019年3月1日 14:18\n",
    "# 本代码单元只能在可视化模式下编辑。您也可以拷贝代码,粘贴到新建的代码单元或者策略,然后修改。\n",
    "\n",
    "\n",
    "# 回测引擎:每日数据处理函数,每天执行一次\n",
    "def m19_handle_data_bigquant_run(context, data):\n",
    "    # 按日期过滤得到今日的预测数据\n",
    "    ranker_prediction = context.ranker_prediction[\n",
    "        context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n",
    "\n",
    "    # 1. 资金分配\n",
    "    # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n",
    "    # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n",
    "    is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)\n",
    "    cash_avg = context.portfolio.portfolio_value / context.options['hold_days']\n",
    "    cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n",
    "    cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n",
    "    positions = {e.symbol: p.amount * p.last_sale_price\n",
    "                 for e, p in context.portfolio.positions.items()}\n",
    "\n",
    "    # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰\n",
    "    if not is_staging and cash_for_sell > 0:\n",
    "        equities = {e.symbol: e for e, p in context.portfolio.positions.items()}\n",
    "        instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n",
    "                lambda x: x in equities)])))\n",
    "\n",
    "        for instrument in instruments:\n",
    "            context.order_target(context.symbol(instrument), 0)\n",
    "            cash_for_sell -= positions[instrument]\n",
    "            if cash_for_sell <= 0:\n",
    "                break\n",
    "\n",
    "    # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票\n",
    "    buy_cash_weights = context.stock_weights\n",
    "    buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n",
    "    max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n",
    "    for i, instrument in enumerate(buy_instruments):\n",
    "        cash = cash_for_buy * buy_cash_weights[i]\n",
    "        if cash > max_cash_per_instrument - positions.get(instrument, 0):\n",
    "            # 确保股票持仓量不会超过每次股票最大的占用资金量\n",
    "            cash = max_cash_per_instrument - positions.get(instrument, 0)\n",
    "        if cash > 0:\n",
    "            context.order_value(context.symbol(instrument), cash)\n",
    "\n",
    "# 回测引擎:准备数据,只执行一次\n",
    "def m19_prepare_bigquant_run(context):\n",
    "    pass\n",
    "\n",
    "# 回测引擎:初始化函数,只执行一次\n",
    "def m19_initialize_bigquant_run(context):\n",
    "    # 加载预测数据\n",
    "    context.ranker_prediction = context.options['data'].read_df()\n",
    "\n",
    "    # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n",
    "    context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n",
    "    # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n",
    "    # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n",
    "    stock_count = 5\n",
    "    # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n",
    "    context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n",
    "    # 设置每只股票占用的最大资金比例\n",
    "    context.max_cash_per_instrument = 0.2\n",
    "    context.options['hold_days'] = 5\n",
    "\n",
    "\n",
    "m1 = M.instruments.v2(\n",
    "    start_date='2010-01-01',\n",
    "    end_date='2015-01-01',\n",
    "    market='CN_STOCK_A',\n",
    "    instrument_list='',\n",
    "    max_count=0\n",
    ")\n",
    "\n",
    "m2 = M.advanced_auto_labeler.v2(\n",
    "    instruments=m1.data,\n",
    "    label_expr=\"\"\"# #号开始的表示注释\n",
    "# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n",
    "# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html\n",
    "#   添加benchmark_前缀,可使用对应的benchmark数据\n",
    "# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_\n",
    "\n",
    "# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\n",
    "shift(close, -5) / shift(open, -1)\n",
    "\n",
    "# 极值处理:用1%和99%分位的值做clip\n",
    "clip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n",
    "\n",
    "# 将分数映射到分类,这里使用20个分类\n",
    "all_wbins(label, 20)\n",
    "\n",
    "# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\n",
    "where(shift(high, -1) == shift(low, -1), NaN, label)\n",
    "\"\"\",\n",
    "    start_date='',\n",
    "    end_date='',\n",
    "    benchmark='000300.SHA',\n",
    "    drop_na_label=True,\n",
    "    cast_label_int=True\n",
    ")\n",
    "\n",
    "m3 = M.input_features.v1(\n",
    "    features=\"\"\"# #号开始的表示注释\n",
    "# 多个特征,每行一个,可以包含基础特征和衍生特征\n",
    "return_5\n",
    "return_10\n",
    "return_20\n",
    "avg_amount_0/avg_amount_5\n",
    "avg_amount_5/avg_amount_20\n",
    "rank_avg_amount_0/rank_avg_amount_5\n",
    "rank_avg_amount_5/rank_avg_amount_10\n",
    "rank_return_0\n",
    "rank_return_5\n",
    "rank_return_10\n",
    "rank_return_0/rank_return_5\n",
    "rank_return_5/rank_return_10\n",
    "pe_ttm_0\n",
    "\"\"\"\n",
    ")\n",
    "\n",
    "m15 = M.general_feature_extractor.v7(\n",
    "    instruments=m1.data,\n",
    "    features=m3.data,\n",
    "    start_date='',\n",
    "    end_date='',\n",
    "    before_start_days=90\n",
    ")\n",
    "\n",
    "m16 = M.derived_feature_extractor.v3(\n",
    "    input_data=m15.data,\n",
    "    features=m3.data,\n",
    "    date_col='date',\n",
    "    instrument_col='instrument',\n",
    "    drop_na=False,\n",
    "    remove_extra_columns=False\n",
    ")\n",
    "\n",
    "m7 = M.join.v3(\n",
    "    data1=m2.data,\n",
    "    data2=m16.data,\n",
    "    on='date,instrument',\n",
    "    how='inner',\n",
    "    sort=False\n",
    ")\n",
    "\n",
    "m13 = M.dropnan.v1(\n",
    "    input_data=m7.data\n",
    ")\n",
    "\n",
    "m6 = M.stock_ranker_train.v5(\n",
    "    training_ds=m13.data,\n",
    "    features=m3.data,\n",
    "    learning_algorithm='排序',\n",
    "    number_of_leaves=30,\n",
    "    minimum_docs_per_leaf=1000,\n",
    "    number_of_trees=20,\n",
    "    learning_rate=0.1,\n",
    "    max_bins=1023,\n",
    "    feature_fraction=1,\n",
    "    m_lazy_run=False\n",
    ")\n",
    "\n",
    "m9 = M.instruments.v2(\n",
    "    start_date=T.live_run_param('trading_date', '2015-01-01'),\n",
    "    end_date=T.live_run_param('trading_date', '2017-01-01'),\n",
    "    market='CN_STOCK_A',\n",
    "    instrument_list='',\n",
    "    max_count=0\n",
    ")\n",
    "\n",
    "m17 = M.general_feature_extractor.v7(\n",
    "    instruments=m9.data,\n",
    "    features=m3.data,\n",
    "    start_date='',\n",
    "    end_date='',\n",
    "    before_start_days=90\n",
    ")\n",
    "\n",
    "m18 = M.derived_feature_extractor.v3(\n",
    "    input_data=m17.data,\n",
    "    features=m3.data,\n",
    "    date_col='date',\n",
    "    instrument_col='instrument',\n",
    "    drop_na=False,\n",
    "    remove_extra_columns=False\n",
    ")\n",
    "\n",
    "m14 = M.dropnan.v1(\n",
    "    input_data=m18.data\n",
    ")\n",
    "\n",
    "m8 = M.stock_ranker_predict.v5(\n",
    "    model=m6.model,\n",
    "    data=m14.data,\n",
    "    m_lazy_run=False\n",
    ")\n",
    "\n",
    "m19 = M.trade.v4(\n",
    "    instruments=m9.data,\n",
    "    options_data=m8.predictions,\n",
    "    start_date='',\n",
    "    end_date='',\n",
    "    handle_data=m19_handle_data_bigquant_run,\n",
    "    prepare=m19_prepare_bigquant_run,\n",
    "    initialize=m19_initialize_bigquant_run,\n",
    "    volume_limit=0.025,\n",
    "    order_price_field_buy='open',\n",
    "    order_price_field_sell='close',\n",
    "    capital_base=1000000,\n",
    "    auto_cancel_non_tradable_orders=True,\n",
    "    data_frequency='daily',\n",
    "    price_type='真实价格',\n",
    "    product_type='股票',\n",
    "    plot_charts=True,\n",
    "    backtest_only=False,\n",
    "    benchmark='000300.SHA'\n",
    ")\n"
   ]
  }
 ],
 "metadata": {
  "is_mlstudio": "false",
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}