Commit 8491babb by 20201219012

Upload New File

parent e1c9a570
{
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# 本代码由可视化策略环境自动生成 2019年3月1日 14:18\n",
"# 本代码单元只能在可视化模式下编辑。您也可以拷贝代码,粘贴到新建的代码单元或者策略,然后修改。\n",
"\n",
"\n",
"# 回测引擎:每日数据处理函数,每天执行一次\n",
"def m19_handle_data_bigquant_run(context, data):\n",
" # 按日期过滤得到今日的预测数据\n",
" ranker_prediction = context.ranker_prediction[\n",
" context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n",
"\n",
" # 1. 资金分配\n",
" # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n",
" # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n",
" is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)\n",
" cash_avg = context.portfolio.portfolio_value / context.options['hold_days']\n",
" cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n",
" cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n",
" positions = {e.symbol: p.amount * p.last_sale_price\n",
" for e, p in context.portfolio.positions.items()}\n",
"\n",
" # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰\n",
" if not is_staging and cash_for_sell > 0:\n",
" equities = {e.symbol: e for e, p in context.portfolio.positions.items()}\n",
" instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n",
" lambda x: x in equities)])))\n",
"\n",
" for instrument in instruments:\n",
" context.order_target(context.symbol(instrument), 0)\n",
" cash_for_sell -= positions[instrument]\n",
" if cash_for_sell <= 0:\n",
" break\n",
"\n",
" # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票\n",
" buy_cash_weights = context.stock_weights\n",
" buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n",
" max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n",
" for i, instrument in enumerate(buy_instruments):\n",
" cash = cash_for_buy * buy_cash_weights[i]\n",
" if cash > max_cash_per_instrument - positions.get(instrument, 0):\n",
" # 确保股票持仓量不会超过每次股票最大的占用资金量\n",
" cash = max_cash_per_instrument - positions.get(instrument, 0)\n",
" if cash > 0:\n",
" context.order_value(context.symbol(instrument), cash)\n",
"\n",
"# 回测引擎:准备数据,只执行一次\n",
"def m19_prepare_bigquant_run(context):\n",
" pass\n",
"\n",
"# 回测引擎:初始化函数,只执行一次\n",
"def m19_initialize_bigquant_run(context):\n",
" # 加载预测数据\n",
" context.ranker_prediction = context.options['data'].read_df()\n",
"\n",
" # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n",
" context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n",
" # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n",
" # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n",
" stock_count = 5\n",
" # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n",
" context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n",
" # 设置每只股票占用的最大资金比例\n",
" context.max_cash_per_instrument = 0.2\n",
" context.options['hold_days'] = 5\n",
"\n",
"\n",
"m1 = M.instruments.v2(\n",
" start_date='2010-01-01',\n",
" end_date='2015-01-01',\n",
" market='CN_STOCK_A',\n",
" instrument_list='',\n",
" max_count=0\n",
")\n",
"\n",
"m2 = M.advanced_auto_labeler.v2(\n",
" instruments=m1.data,\n",
" label_expr=\"\"\"# #号开始的表示注释\n",
"# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n",
"# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html\n",
"# 添加benchmark_前缀,可使用对应的benchmark数据\n",
"# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_\n",
"\n",
"# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\n",
"shift(close, -5) / shift(open, -1)\n",
"\n",
"# 极值处理:用1%和99%分位的值做clip\n",
"clip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n",
"\n",
"# 将分数映射到分类,这里使用20个分类\n",
"all_wbins(label, 20)\n",
"\n",
"# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\n",
"where(shift(high, -1) == shift(low, -1), NaN, label)\n",
"\"\"\",\n",
" start_date='',\n",
" end_date='',\n",
" benchmark='000300.SHA',\n",
" drop_na_label=True,\n",
" cast_label_int=True\n",
")\n",
"\n",
"m3 = M.input_features.v1(\n",
" features=\"\"\"# #号开始的表示注释\n",
"# 多个特征,每行一个,可以包含基础特征和衍生特征\n",
"return_5\n",
"return_10\n",
"return_20\n",
"avg_amount_0/avg_amount_5\n",
"avg_amount_5/avg_amount_20\n",
"rank_avg_amount_0/rank_avg_amount_5\n",
"rank_avg_amount_5/rank_avg_amount_10\n",
"rank_return_0\n",
"rank_return_5\n",
"rank_return_10\n",
"rank_return_0/rank_return_5\n",
"rank_return_5/rank_return_10\n",
"pe_ttm_0\n",
"\"\"\"\n",
")\n",
"\n",
"m15 = M.general_feature_extractor.v7(\n",
" instruments=m1.data,\n",
" features=m3.data,\n",
" start_date='',\n",
" end_date='',\n",
" before_start_days=90\n",
")\n",
"\n",
"m16 = M.derived_feature_extractor.v3(\n",
" input_data=m15.data,\n",
" features=m3.data,\n",
" date_col='date',\n",
" instrument_col='instrument',\n",
" drop_na=False,\n",
" remove_extra_columns=False\n",
")\n",
"\n",
"m7 = M.join.v3(\n",
" data1=m2.data,\n",
" data2=m16.data,\n",
" on='date,instrument',\n",
" how='inner',\n",
" sort=False\n",
")\n",
"\n",
"m13 = M.dropnan.v1(\n",
" input_data=m7.data\n",
")\n",
"\n",
"m6 = M.stock_ranker_train.v5(\n",
" training_ds=m13.data,\n",
" features=m3.data,\n",
" learning_algorithm='排序',\n",
" number_of_leaves=30,\n",
" minimum_docs_per_leaf=1000,\n",
" number_of_trees=20,\n",
" learning_rate=0.1,\n",
" max_bins=1023,\n",
" feature_fraction=1,\n",
" m_lazy_run=False\n",
")\n",
"\n",
"m9 = M.instruments.v2(\n",
" start_date=T.live_run_param('trading_date', '2015-01-01'),\n",
" end_date=T.live_run_param('trading_date', '2017-01-01'),\n",
" market='CN_STOCK_A',\n",
" instrument_list='',\n",
" max_count=0\n",
")\n",
"\n",
"m17 = M.general_feature_extractor.v7(\n",
" instruments=m9.data,\n",
" features=m3.data,\n",
" start_date='',\n",
" end_date='',\n",
" before_start_days=90\n",
")\n",
"\n",
"m18 = M.derived_feature_extractor.v3(\n",
" input_data=m17.data,\n",
" features=m3.data,\n",
" date_col='date',\n",
" instrument_col='instrument',\n",
" drop_na=False,\n",
" remove_extra_columns=False\n",
")\n",
"\n",
"m14 = M.dropnan.v1(\n",
" input_data=m18.data\n",
")\n",
"\n",
"m8 = M.stock_ranker_predict.v5(\n",
" model=m6.model,\n",
" data=m14.data,\n",
" m_lazy_run=False\n",
")\n",
"\n",
"m19 = M.trade.v4(\n",
" instruments=m9.data,\n",
" options_data=m8.predictions,\n",
" start_date='',\n",
" end_date='',\n",
" handle_data=m19_handle_data_bigquant_run,\n",
" prepare=m19_prepare_bigquant_run,\n",
" initialize=m19_initialize_bigquant_run,\n",
" volume_limit=0.025,\n",
" order_price_field_buy='open',\n",
" order_price_field_sell='close',\n",
" capital_base=1000000,\n",
" auto_cancel_non_tradable_orders=True,\n",
" data_frequency='daily',\n",
" price_type='真实价格',\n",
" product_type='股票',\n",
" plot_charts=True,\n",
" backtest_only=False,\n",
" benchmark='000300.SHA'\n",
")\n"
]
}
],
"metadata": {
"is_mlstudio": "false",
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment