Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
H
homework1
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
20201219012
homework1
Commits
8491babb
Commit
8491babb
authored
Feb 26, 2021
by
20201219012
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Upload New File
parent
e1c9a570
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
239 additions
and
0 deletions
+239
-0
策略4:增加股票多样性的QP策略.ipynb
+239
-0
No files found.
策略4:增加股票多样性的QP策略.ipynb
0 → 100644
View file @
8491babb
{
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# 本代码由可视化策略环境自动生成 2019年3月1日 14:18\n",
"# 本代码单元只能在可视化模式下编辑。您也可以拷贝代码,粘贴到新建的代码单元或者策略,然后修改。\n",
"\n",
"\n",
"# 回测引擎:每日数据处理函数,每天执行一次\n",
"def m19_handle_data_bigquant_run(context, data):\n",
" # 按日期过滤得到今日的预测数据\n",
" ranker_prediction = context.ranker_prediction[\n",
" context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n",
"\n",
" # 1. 资金分配\n",
" # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n",
" # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n",
" is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)\n",
" cash_avg = context.portfolio.portfolio_value / context.options['hold_days']\n",
" cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n",
" cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n",
" positions = {e.symbol: p.amount * p.last_sale_price\n",
" for e, p in context.portfolio.positions.items()}\n",
"\n",
" # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰\n",
" if not is_staging and cash_for_sell > 0:\n",
" equities = {e.symbol: e for e, p in context.portfolio.positions.items()}\n",
" instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n",
" lambda x: x in equities)])))\n",
"\n",
" for instrument in instruments:\n",
" context.order_target(context.symbol(instrument), 0)\n",
" cash_for_sell -= positions[instrument]\n",
" if cash_for_sell <= 0:\n",
" break\n",
"\n",
" # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票\n",
" buy_cash_weights = context.stock_weights\n",
" buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n",
" max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n",
" for i, instrument in enumerate(buy_instruments):\n",
" cash = cash_for_buy * buy_cash_weights[i]\n",
" if cash > max_cash_per_instrument - positions.get(instrument, 0):\n",
" # 确保股票持仓量不会超过每次股票最大的占用资金量\n",
" cash = max_cash_per_instrument - positions.get(instrument, 0)\n",
" if cash > 0:\n",
" context.order_value(context.symbol(instrument), cash)\n",
"\n",
"# 回测引擎:准备数据,只执行一次\n",
"def m19_prepare_bigquant_run(context):\n",
" pass\n",
"\n",
"# 回测引擎:初始化函数,只执行一次\n",
"def m19_initialize_bigquant_run(context):\n",
" # 加载预测数据\n",
" context.ranker_prediction = context.options['data'].read_df()\n",
"\n",
" # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n",
" context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n",
" # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n",
" # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n",
" stock_count = 5\n",
" # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n",
" context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n",
" # 设置每只股票占用的最大资金比例\n",
" context.max_cash_per_instrument = 0.2\n",
" context.options['hold_days'] = 5\n",
"\n",
"\n",
"m1 = M.instruments.v2(\n",
" start_date='2010-01-01',\n",
" end_date='2015-01-01',\n",
" market='CN_STOCK_A',\n",
" instrument_list='',\n",
" max_count=0\n",
")\n",
"\n",
"m2 = M.advanced_auto_labeler.v2(\n",
" instruments=m1.data,\n",
" label_expr=\"\"\"# #号开始的表示注释\n",
"# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n",
"# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html\n",
"# 添加benchmark_前缀,可使用对应的benchmark数据\n",
"# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_\n",
"\n",
"# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\n",
"shift(close, -5) / shift(open, -1)\n",
"\n",
"# 极值处理:用1%和99%分位的值做clip\n",
"clip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n",
"\n",
"# 将分数映射到分类,这里使用20个分类\n",
"all_wbins(label, 20)\n",
"\n",
"# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\n",
"where(shift(high, -1) == shift(low, -1), NaN, label)\n",
"\"\"\",\n",
" start_date='',\n",
" end_date='',\n",
" benchmark='000300.SHA',\n",
" drop_na_label=True,\n",
" cast_label_int=True\n",
")\n",
"\n",
"m3 = M.input_features.v1(\n",
" features=\"\"\"# #号开始的表示注释\n",
"# 多个特征,每行一个,可以包含基础特征和衍生特征\n",
"return_5\n",
"return_10\n",
"return_20\n",
"avg_amount_0/avg_amount_5\n",
"avg_amount_5/avg_amount_20\n",
"rank_avg_amount_0/rank_avg_amount_5\n",
"rank_avg_amount_5/rank_avg_amount_10\n",
"rank_return_0\n",
"rank_return_5\n",
"rank_return_10\n",
"rank_return_0/rank_return_5\n",
"rank_return_5/rank_return_10\n",
"pe_ttm_0\n",
"\"\"\"\n",
")\n",
"\n",
"m15 = M.general_feature_extractor.v7(\n",
" instruments=m1.data,\n",
" features=m3.data,\n",
" start_date='',\n",
" end_date='',\n",
" before_start_days=90\n",
")\n",
"\n",
"m16 = M.derived_feature_extractor.v3(\n",
" input_data=m15.data,\n",
" features=m3.data,\n",
" date_col='date',\n",
" instrument_col='instrument',\n",
" drop_na=False,\n",
" remove_extra_columns=False\n",
")\n",
"\n",
"m7 = M.join.v3(\n",
" data1=m2.data,\n",
" data2=m16.data,\n",
" on='date,instrument',\n",
" how='inner',\n",
" sort=False\n",
")\n",
"\n",
"m13 = M.dropnan.v1(\n",
" input_data=m7.data\n",
")\n",
"\n",
"m6 = M.stock_ranker_train.v5(\n",
" training_ds=m13.data,\n",
" features=m3.data,\n",
" learning_algorithm='排序',\n",
" number_of_leaves=30,\n",
" minimum_docs_per_leaf=1000,\n",
" number_of_trees=20,\n",
" learning_rate=0.1,\n",
" max_bins=1023,\n",
" feature_fraction=1,\n",
" m_lazy_run=False\n",
")\n",
"\n",
"m9 = M.instruments.v2(\n",
" start_date=T.live_run_param('trading_date', '2015-01-01'),\n",
" end_date=T.live_run_param('trading_date', '2017-01-01'),\n",
" market='CN_STOCK_A',\n",
" instrument_list='',\n",
" max_count=0\n",
")\n",
"\n",
"m17 = M.general_feature_extractor.v7(\n",
" instruments=m9.data,\n",
" features=m3.data,\n",
" start_date='',\n",
" end_date='',\n",
" before_start_days=90\n",
")\n",
"\n",
"m18 = M.derived_feature_extractor.v3(\n",
" input_data=m17.data,\n",
" features=m3.data,\n",
" date_col='date',\n",
" instrument_col='instrument',\n",
" drop_na=False,\n",
" remove_extra_columns=False\n",
")\n",
"\n",
"m14 = M.dropnan.v1(\n",
" input_data=m18.data\n",
")\n",
"\n",
"m8 = M.stock_ranker_predict.v5(\n",
" model=m6.model,\n",
" data=m14.data,\n",
" m_lazy_run=False\n",
")\n",
"\n",
"m19 = M.trade.v4(\n",
" instruments=m9.data,\n",
" options_data=m8.predictions,\n",
" start_date='',\n",
" end_date='',\n",
" handle_data=m19_handle_data_bigquant_run,\n",
" prepare=m19_prepare_bigquant_run,\n",
" initialize=m19_initialize_bigquant_run,\n",
" volume_limit=0.025,\n",
" order_price_field_buy='open',\n",
" order_price_field_sell='close',\n",
" capital_base=1000000,\n",
" auto_cancel_non_tradable_orders=True,\n",
" data_frequency='daily',\n",
" price_type='真实价格',\n",
" product_type='股票',\n",
" plot_charts=True,\n",
" backtest_only=False,\n",
" benchmark='000300.SHA'\n",
")\n"
]
}
],
"metadata": {
"is_mlstudio": "false",
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment