%matplotlib inline
Bert-BiLSTM-CRF 命名实体识别
by Qiao for NLP7 2020-08-21
1) 首先请回顾BiLSTM-CRF的review,Bert只作为encoder,替换BiLSTM原本的embedding,下游任务并无变化。
2) notebook续用Pytorch官方BiLSTM-CRF的教程。在此基础上加上bert相关处理。
核心:
- 前向算法(forward)
- Viterbi算法
======================================================
要点
令 为标注序列,$x$为token序列, 模型计算的是条件概率:
\begin{align}P(y|x) = \frac{\exp{(\text{Score}(x, y)})}{\sum_{y'} \exp{(\text{Score}(x, y')})}\end{align}
得分函数可定义为句子各个位置的发射分数$f(y_t|x)$(特征)以及先后位置之间的转移分数$g(yt|x, y{t-1})$ 之和:
\begin{align}\text{Score}(x,y) = \sum_{t=1}^{T} f(yt|x) + \sum{t=2}^{T} g(yt|x, y{t-1})\end{align}
请回顾,在Bi-LSTM CRF中, 可由第t个token的隐状态来表示。$g(yt|x,y{t-1})$ 由参数矩阵$\mathbf{P} \in R^{K \times K}$中的$P{t,t-1}$表示, 是标签集合的元素个数. 在代码中$P{ij}$表示的是由标签$t_j$ 转移到标签$t_i$,
实际我们优化的是$\log(P(y|x))$, (或最小化Negative Probability): \begin{align} \log(P(y|x)) = & \text{ Score}(x, y) - \log \bigg(\sum{y'} \exp \big (\text{Score}(x, y') \big) \bigg) \\ = &\sum{t=1}^{T} f(yt|x) + \sum{t=2}^{T} g(yt|x, y{t-1}) - \\ &- \log \bigg ( {\sum{y'} \bigg \{ \exp \big( \sum{t=1}^{T} f(y't|x) + \sum{t=2}^{T} g(y't|x, y'{t-1}) \big ) \bigg \}} \bigg ) \\ \end{align}
import torch import torch.autograd as autograd import torch.nn as nn import torch.optim as optim !pip install -q transformers torch.manual_seed(1)
<torch._C.Generator at 0x7f294aa74120>
def show_bert_doctrine(): tokenizer = BertTokenizer.from_pretrained(BERT_MODEL_NAME) bert = BertModel.from_pretrained(BERT_MODEL_NAME) for k, v in tokenizer("I am a boy", return_tensors="pt").items(): print(k, v) if k == "input_ids": print(tokenizer.convert_ids_to_tokens(v.squeeze())) h = bert(**tokenizer("I am a boy", return_tensors="pt"))[0] print(h.shape) show_bert_doctrine()
input_ids tensor([[ 101, 146, 1821, 170, 2298, 102]]) ['[CLS]', 'I', 'am', 'a', 'boy', '[SEP]'] token_type_ids tensor([[0, 0, 0, 0, 0, 0]]) attention_mask tensor([[1, 1, 1, 1, 1, 1]]) torch.Size([1, 6, 768])
from transformers import BertTokenizer, BertModel, BertConfig BERT_MODEL_NAME = "bert-base-cased" class BertEmbedding(nn.Module): def __init__(self): super(BertEmbedding, self).__init__() self.bert = BertModel.from_pretrained(BERT_MODEL_NAME) def fix_params(self): for param in self.bert.parameters(): param.requires_grad = False def free_params(self): for param in self.bert.parameters(): param.requires_grad = True def forward(self, inputs): return self.bert(**inputs)[0][:,1:-1,:]
Helper functions to make the code more readable.
def argmax(vec): # return the argmax as a python int _, idx = torch.max(vec, 1) return idx.item() def prepare_sequence(seq, tags, tokenizer, tag_to_ix): tags = tags.split() targets = torch.tensor([tag_to_ix[t] for t in tags], dtype=torch.long) # prepare inputs for bert model and find start tokens (for word piece tokens) input_ids = tokenizer(seq, return_tensors="pt") word_pieces = tokenizer.convert_ids_to_tokens(input_ids['input_ids'].squeeze())[1:-1] token_starts = torch.LongTensor([i for i, wp in enumerate(word_pieces) if not wp.startswith("##")]) return input_ids, targets, token_starts # Compute log sum exp in a numerically stable way for the forward algorithm def log_sum_exp(vec): max_score = vec[0, argmax(vec)] max_score_broadcast = max_score.view(1, -1).expand(1, vec.size()[1]) return max_score + \ torch.log(torch.sum(torch.exp(vec - max_score_broadcast)))
Create model
class BiLSTM_CRF(nn.Module): def __init__(self, tag_to_ix, embedding_dim=768, hidden_dim=768): super(BiLSTM_CRF, self).__init__() self.embedding_dim = embedding_dim self.hidden_dim = hidden_dim self.tag_to_ix = tag_to_ix self.tagset_size = len(tag_to_ix) self.word_embeds = BertEmbedding() self.lstm = nn.LSTM(embedding_dim, hidden_dim // 2, num_layers=1, bidirectional=True) # Maps the output of the LSTM into tag space. self.hidden2tag = nn.Linear(hidden_dim, self.tagset_size) # Matrix of transition parameters. Entry i,j is the score of # transitioning *to* i *from* j. self.transitions = nn.Parameter( torch.randn(self.tagset_size, self.tagset_size)) # These two statements enforce the constraint that we never transfer # to the start tag and we never transfer from the stop tag self.transitions.data[tag_to_ix[START_TAG], :] = -10000 self.transitions.data[:, tag_to_ix[STOP_TAG]] = -10000 self.hidden = self.init_hidden() def fix_bert(self): self.word_embeds.fix_params() def free_bert(self): self.word_embeds.free_params() def init_hidden(self): return (torch.randn(2, 1, self.hidden_dim // 2), torch.randn(2, 1, self.hidden_dim // 2)) def _forward_alg(self, feats): # Do the forward algorithm to compute the partition function init_alphas = torch.full((1, self.tagset_size), -10000.) # START_TAG has all of the score. init_alphas[0][self.tag_to_ix[START_TAG]] = 0. # Wrap in a variable so that we will get automatic backprop forward_var = init_alphas # Iterate through the sentence for feat in feats: # alphas_t = [] # The forward tensors at this timestep # for next_tag in range(self.tagset_size): # # broadcast the emission score: it is the same regardless of # # the previous tag # emit_score = feat[next_tag].view( # 1, -1).expand(1, self.tagset_size) # # the ith entry of trans_score is the score of transitioning to # # next_tag from i # trans_score = self.transitions[next_tag].view(1, -1) # # The ith entry of next_tag_var is the value for the # # edge (i -> next_tag) before we do log-sum-exp # next_tag_var = forward_var + trans_score + emit_score # # The forward variable for this tag is log-sum-exp of all the # # scores. # alphas_t.append(log_sum_exp(next_tag_var).view(1)) # forward_var = torch.cat(alphas_t).view(1, -1) forward_var = torch.logsumexp(feat.expand(self.tagset_size, -1) + self.transitions.T + forward_var.view(-1, 1), dim=0, keepdim=True) terminal_var = forward_var + self.transitions[self.tag_to_ix[STOP_TAG]] alpha = log_sum_exp(terminal_var) return alpha def _get_lstm_features(self, embeds): self.hidden = self.init_hidden() embeds = embeds.view(embeds.shape[1], embeds.shape[0], -1) lstm_out, self.hidden = self.lstm(embeds, self.hidden) lstm_out = lstm_out.view(lstm_out.shape[1], lstm_out.shape[0], self.hidden_dim) lstm_feats = self.hidden2tag(lstm_out) return lstm_feats def _score_sentence(self, feats, tags): # Gives the score of a provided tag sequence score = torch.zeros(1) tags = torch.cat([torch.tensor([self.tag_to_ix[START_TAG]], dtype=torch.long), tags]) for i, feat in enumerate(feats): score = score + \ self.transitions[tags[i + 1], tags[i]] + feat[tags[i + 1]] score = score + self.transitions[self.tag_to_ix[STOP_TAG], tags[-1]] return score def _viterbi_decode(self, feats): backpointers = [] # Initialize the viterbi variables in log space init_vvars = torch.full((1, self.tagset_size), -10000.) init_vvars[0][self.tag_to_ix[START_TAG]] = 0 # forward_var at step i holds the viterbi variables for step i-1 forward_var = init_vvars for feat in feats: # bptrs_t = [] # holds the backpointers for this step # viterbivars_t = [] # holds the viterbi variables for this step # for next_tag in range(self.tagset_size): # # next_tag_var[i] holds the viterbi variable for tag i at the # # previous step, plus the score of transitioning # # from tag i to next_tag. # # We don't include the emission scores here because the max # # does not depend on them (we add them in below) # next_tag_var = forward_var + self.transitions[next_tag] # # print(next_tag_var) # best_tag_id = argmax(next_tag_var) # bptrs_t.append(best_tag_id) # viterbivars_t.append(next_tag_var[0][best_tag_id].view(1)) # # Now add in the emission scores, and assign forward_var to the set # # of viterbi variables we just computed # forward_var = (torch.cat(viterbivars_t) + feat).view(1, -1) # backpointers.append(bptrs_t) scores = self.transitions + forward_var forward_var, bptrs = torch.max(scores, dim=1) forward_var = forward_var.view(1, -1) + feat.view(1, -1) backpointers.append(bptrs.cpu().numpy().tolist()) # Transition to STOP_TAG terminal_var = forward_var + self.transitions[self.tag_to_ix[STOP_TAG]] best_tag_id = argmax(terminal_var) path_score = terminal_var[0][best_tag_id] # Follow the back pointers to decode the best path. best_path = [best_tag_id] for bptrs_t in reversed(backpointers): best_tag_id = bptrs_t[best_tag_id] best_path.append(best_tag_id) # Pop off the start tag (we dont want to return that to the caller) start = best_path.pop() assert start == self.tag_to_ix[START_TAG] # Sanity check best_path.reverse() return path_score, best_path def neg_log_likelihood(self, input_ids, tags, token_starts): embeds = self.word_embeds(input_ids)[:, token_starts] feats = self._get_lstm_features(embeds).squeeze() forward_score = self._forward_alg(feats) gold_score = self._score_sentence(feats, tags) return forward_score - gold_score def forward(self, input_ids, token_starts): # dont confuse this with _forward_alg above. embeds = self.word_embeds(input_ids)[:, token_starts] # Get the emission scores from the BiLSTM lstm_feats = self._get_lstm_features(embeds).squeeze() # Find the best path, given the features. score, tag_seq = self._viterbi_decode(lstm_feats) return score, tag_seq
Run training
START_TAG = "<START>" STOP_TAG = "<STOP>" EMBEDDING_DIM = 768 HIDDEN_DIM = 768 # Make up some training data training_data = [( "the wall street journal reported today that apple corporation made money", "B I I I O O O B I O O" ), ( "georgia tech is a university in georgia", "B I O O O O B" ) ] tokenizer = BertTokenizer.from_pretrained(BERT_MODEL_NAME) tag_to_ix = {"B": 0, "I": 1, "O": 2, START_TAG: 3, STOP_TAG: 4} model = BiLSTM_CRF(tag_to_ix, EMBEDDING_DIM, HIDDEN_DIM) # model.fix_bert() # model.free_bert() optimizer = optim.SGD([param for param in model.parameters() if param.requires_grad], lr=0.01, weight_decay=1e-4) # Check predictions before training with torch.no_grad(): precheck_sent, targets, token_starts = prepare_sequence(training_data[0][0], training_data[0][1], tokenizer, tag_to_ix) print(precheck_sent) print(targets) print(token_starts) print(model(precheck_sent, token_starts)) # Make sure prepare_sequence from earlier in the LSTM section is loaded for epoch in range( 300): # again, normally you would NOT do 300 epochs, it is toy data for sentence, tags in training_data: # Step 1. Remember that Pytorch accumulates gradients. # We need to clear them out before each instance model.zero_grad() # Step 2. Get our inputs ready for the network, that is, # turn them into Tensors of word indices. sentence_in, targets, token_starts = prepare_sequence(sentence, tags, tokenizer, tag_to_ix) # Step 3. Run our forward pass. loss = model.neg_log_likelihood(sentence_in, targets, token_starts) print(loss.item()) # Step 4. Compute the loss, gradients, and update the parameters by # calling optimizer.step() loss.backward() optimizer.step() # Check predictions after training with torch.no_grad(): precheck_sent, targets, token_starts = prepare_sequence(training_data[0][0], training_data[0][1], tokenizer, tag_to_ix) print(model(precheck_sent, token_starts)) # We got it!
{'input_ids': tensor([[ 101, 1103, 2095, 2472, 4897, 2103, 2052, 1115, 12075, 9715, 1189, 1948, 102]]), 'token_type_ids': tensor([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]), 'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]])} tensor([0, 1, 1, 1, 2, 2, 2, 0, 1, 2, 2]) tensor([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) (tensor(13.2155), [0, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2]) 18.524065017700195 9.69771957397461 14.04741096496582 8.564186096191406 12.153670310974121 6.623537540435791 10.821130752563477 4.869028091430664 6.799995422363281 3.2920217514038086 4.022052764892578 2.0438756942749023 2.6931686401367188 1.468423843383789 1.6920318603515625 1.061056137084961 1.3279285430908203 0.7923049926757812 0.9889354705810547 0.6197624206542969 0.8111076354980469 0.49001502990722656 0.5839614868164062 0.4056587219238281 0.4795722961425781 0.3584175109863281 0.40242767333984375 0.28954315185546875 0.35292816162109375 0.26021385192871094 0.31992340087890625 0.23885726928710938 0.28530120849609375 0.20218849182128906 0.2623939514160156 0.18845367431640625 0.23521804809570312 0.18128585815429688 0.2100372314453125 0.166534423828125 0.18750381469726562 0.1447906494140625 0.18436050415039062 0.14190673828125 0.1678924560546875 0.12019920349121094 0.15915298461914062 0.12767410278320312 0.156585693359375 0.11075401306152344 0.13356399536132812 0.112640380859375 0.13848114013671875 0.09398269653320312 0.11859512329101562 0.11187934875488281 0.12015533447265625 0.097015380859375 0.1128692626953125 0.08238029479980469 0.11193466186523438 0.0859375 0.10143661499023438 0.07348251342773438 0.09615325927734375 0.08072662353515625 0.09915542602539062 0.07670974731445312 0.09319305419921875 0.07427406311035156 0.08670425415039062 0.07334327697753906 0.08296585083007812 0.058940887451171875 0.08138656616210938 0.07139396667480469 0.07628631591796875 0.057964324951171875 0.07128524780273438 0.06273269653320312 0.07092666625976562 0.0547943115234375 0.06726837158203125 0.05399322509765625 0.07040786743164062 0.04906463623046875 0.06667709350585938 0.059417724609375 0.06259536743164062 0.04938507080078125 0.0604248046875 0.04944610595703125 0.0582275390625 0.045818328857421875 0.056118011474609375 0.05054473876953125 0.058383941650390625 0.046283721923828125 0.05562591552734375 0.041900634765625 0.05492401123046875 0.04074859619140625 0.056545257568359375 0.039409637451171875 0.04883575439453125 0.043308258056640625 0.048919677734375 0.04802703857421875 0.048126220703125 0.0400238037109375 0.04732513427734375 0.03691864013671875 0.045360565185546875 0.034305572509765625 0.04703521728515625 0.036441802978515625 0.04430389404296875 0.033931732177734375 0.04705810546875 0.0346527099609375 0.04831695556640625 0.032558441162109375 0.04573822021484375 0.03507232666015625 0.041988372802734375 0.031864166259765625 0.044342041015625 0.034694671630859375 0.042476654052734375 0.03163909912109375 0.0418243408203125 0.030185699462890625 0.04074859619140625 0.031215667724609375 0.038516998291015625 0.02901458740234375 0.035953521728515625 0.030879974365234375 0.034549713134765625 0.03258514404296875 0.033969879150390625 0.029605865478515625 0.03438568115234375 0.028820037841796875 0.034946441650390625 0.025196075439453125 0.038326263427734375 0.027629852294921875 0.03270721435546875 0.027362823486328125 0.03369903564453125 0.0268707275390625 0.033721923828125 0.027248382568359375 0.0313262939453125 0.021869659423828125 0.031650543212890625 0.023372650146484375 0.03081512451171875 0.026371002197265625 0.032398223876953125 0.023090362548828125 0.02802276611328125 0.02558135986328125 0.030231475830078125 0.021945953369140625 0.02909088134765625 0.0247344970703125 0.0286102294921875 0.023036956787109375 0.028675079345703125 0.0205535888671875 0.027423858642578125 0.0208587646484375 0.026210784912109375 0.021144866943359375 0.02787017822265625 0.021575927734375 0.029216766357421875 0.020732879638671875 0.026523590087890625 0.024517059326171875 0.025310516357421875 0.020252227783203125 0.02447509765625 0.0202789306640625 0.025203704833984375 0.0197906494140625 0.0258941650390625 0.02239227294921875 0.023662567138671875 0.021244049072265625 0.024349212646484375 0.020130157470703125 0.023754119873046875 0.019435882568359375 0.0241546630859375 0.01947784423828125 0.023235321044921875 0.016143798828125 0.023433685302734375 0.01739501953125 0.02231597900390625 0.017894744873046875 0.022922515869140625 0.02083587646484375 0.02474212646484375 0.02251434326171875 0.021392822265625 0.01758575439453125 0.022747039794921875 0.015537261962890625 0.02065277099609375 0.017360687255859375 0.020465850830078125 0.017726898193359375 0.022495269775390625 0.014987945556640625 0.020709991455078125 0.01609039306640625 0.020999908447265625 0.016460418701171875 0.01959228515625 0.01551055908203125 0.02266693115234375 0.016361236572265625 0.02111053466796875 0.01638031005859375 0.02060699462890625 0.01663970947265625 0.020244598388671875 0.015842437744140625 0.020843505859375 0.014667510986328125 0.01929473876953125 0.015880584716796875 0.02040863037109375 0.015750885009765625 0.018482208251953125 0.0142059326171875 0.01972198486328125 0.013668060302734375 0.0186920166015625 0.015918731689453125 0.018817901611328125 0.0158233642578125 0.0180816650390625 0.01428985595703125 0.01825714111328125 0.0151824951171875 0.019374847412109375 0.014495849609375 0.01856231689453125 0.014423370361328125 0.017303466796875 0.013736724853515625 0.018497467041015625 0.015117645263671875 0.017253875732421875 0.014644622802734375 0.016506195068359375 0.0121612548828125 0.0164642333984375 0.014312744140625 0.016620635986328125 0.014163970947265625 0.0162811279296875 0.01226806640625 0.01753997802734375 0.011386871337890625 0.01616668701171875 0.011974334716796875 0.016300201416015625 0.013896942138671875 0.017597198486328125 0.01239013671875 0.0173187255859375 0.01284027099609375 0.015384674072265625 0.01336669921875 0.01540374755859375 0.011402130126953125 0.015346527099609375 0.013134002685546875 0.015522003173828125 0.013195037841796875 0.01406097412109375 0.011493682861328125 0.014446258544921875 0.010650634765625 0.014507293701171875 0.011463165283203125 0.014896392822265625 0.01290130615234375 0.014240264892578125 0.01092529296875 0.015430450439453125 0.0108642578125 0.01447296142578125 0.012973785400390625 0.01438140869140625 0.01300048828125 0.013576507568359375 0.011295318603515625 0.01415252685546875 0.0108642578125 0.01309967041015625 0.01047515869140625 0.01422119140625 0.010467529296875 0.0141448974609375 0.01103973388671875 0.014190673828125 0.0120849609375 0.0131988525390625 0.010616302490234375 0.013736724853515625 0.010257720947265625 0.013278961181640625 0.010540008544921875 0.0131683349609375 0.01039886474609375 0.013446807861328125 0.011157989501953125 0.01340484619140625 0.0098114013671875 0.013446807861328125 0.009975433349609375 0.012508392333984375 0.01080322265625 0.014354705810546875 0.009792327880859375 0.012340545654296875 0.0105438232421875 0.013671875 0.0110626220703125 0.012943267822265625 0.010120391845703125 0.013378143310546875 0.00951385498046875 0.0131072998046875 0.0108489990234375 0.0121612548828125 0.009967803955078125 0.01238250732421875 0.010311126708984375 0.0124664306640625 0.010467529296875 0.0120391845703125 0.0117034912109375 0.0121307373046875 0.009685516357421875 0.012298583984375 0.0098724365234375 0.0128173828125 0.009761810302734375 0.01177978515625 0.01038360595703125 0.011627197265625 0.00908660888671875 0.0117034912109375 0.0099334716796875 0.012271881103515625 0.009540557861328125 0.011627197265625 0.010009765625 0.0126190185546875 0.01012420654296875 0.01081085205078125 0.007740020751953125 0.012298583984375 0.008716583251953125 0.01180267333984375 0.00844573974609375 0.0113372802734375 0.008884429931640625 0.011505126953125 0.00984954833984375 0.01119232177734375 0.00861358642578125 0.01031494140625 0.008487701416015625 0.01244354248046875 0.0093231201171875 0.01107025146484375 0.008533477783203125 0.01091766357421875 0.008617401123046875 0.010406494140625 0.0083465576171875 0.01100921630859375 0.009456634521484375 0.01100921630859375 0.008056640625 0.01030731201171875 0.007488250732421875 0.010772705078125 0.007480621337890625 0.01053619384765625 0.008472442626953125 0.010589599609375 0.0088958740234375 0.01128387451171875 0.009918212890625 0.01088714599609375 0.008514404296875 0.01080322265625 0.0071258544921875 0.010009765625 0.008731842041015625 0.0098724365234375 0.0072479248046875 0.0101318359375 0.008106231689453125 0.01024627685546875 0.00862884521484375 0.00954437255859375 0.0081939697265625 0.00975799560546875 0.008026123046875 0.009552001953125 0.00832366943359375 0.0098419189453125 0.0070343017578125 0.0099334716796875 0.0074920654296875 0.00946044921875 0.00853729248046875 0.00921630859375 0.0077972412109375 0.00951385498046875 0.007396697998046875 0.0100250244140625 0.009342193603515625 0.00954437255859375 0.0079803466796875 0.008880615234375 0.008434295654296875 0.0090484619140625 0.007110595703125 0.00968170166015625 0.0068359375 0.009857177734375 0.007167816162109375 0.00902557373046875 0.006305694580078125 0.0089874267578125 0.006649017333984375 0.00882720947265625 0.008533477783203125 0.0087127685546875 0.007343292236328125 0.008880615234375 0.008068084716796875 0.00888824462890625 0.007770538330078125 0.009124755859375 0.00626373291015625 0.00911712646484375 0.00612640380859375 0.0088958740234375 0.00647735595703125 0.0089111328125 0.007434844970703125 0.0087890625 0.007080078125 0.00887298583984375 0.00897216796875 0.00885009765625 0.008426666259765625 0.00882720947265625 0.00696563720703125 0.0092010498046875 0.007831573486328125 0.0085296630859375 0.010101318359375 0.00839996337890625 0.00801849365234375 0.0079345703125 0.006923675537109375 0.0084991455078125 0.006603240966796875 0.00806427001953125 0.006256103515625 0.008270263671875 0.005626678466796875 0.00952911376953125 0.006160736083984375 0.0076446533203125 0.006496429443359375 0.00849151611328125 0.006252288818359375 0.0078582763671875 0.008190155029296875 0.00811004638671875 0.006290435791015625 0.00807952880859375 0.0070343017578125 0.007781982421875 0.00659942626953125 0.007843017578125 0.00652313232421875 0.00832366943359375 0.00632476806640625 0.00812530517578125 0.0057373046875 0.0083160400390625 0.006359100341796875 0.00809478759765625 0.006908416748046875 0.00762939453125 0.006832122802734375 0.0077972412109375 0.006381988525390625 0.00762939453125 0.00646209716796875 0.00800323486328125 0.0063323974609375 0.0072479248046875 0.006053924560546875 0.00753021240234375 0.0057525634765625 0.0079193115234375 0.006107330322265625 0.00705718994140625 0.006580352783203125 0.00762176513671875 0.005779266357421875 0.00726318359375 0.006378173828125 0.007659912109375 0.0057525634765625 0.00732421875 0.00592041015625 0.00737762451171875 0.00604248046875 0.00757598876953125 0.00582122802734375 0.00702667236328125 0.00572967529296875 0.00705718994140625 0.005855560302734375 0.00701904296875 0.007171630859375 0.0075225830078125 0.00605010986328125 0.00777435302734375 0.006053924560546875 0.0075225830078125 0.006076812744140625 0.00733184814453125 0.005329132080078125 0.00736236572265625 0.00611114501953125 0.0070953369140625 0.005405426025390625 0.00687408447265625 0.005764007568359375 0.00737762451171875 0.005706787109375 0.00720977783203125 0.005462646484375 0.00725555419921875 0.00591278076171875 0.0068359375 0.00504302978515625 0.00681304931640625 0.00567626953125 0.00745391845703125 0.00548553466796875 0.0076904296875 0.006725311279296875 0.0070037841796875 0.006229400634765625 0.0073699951171875 0.005184173583984375 0.00695037841796875 0.004901885986328125 0.00705718994140625 0.005374908447265625 0.00798797607421875 0.005619049072265625 0.00702667236328125 0.00490570068359375 0.0074462890625 0.005405426025390625 0.0065155029296875 0.0051116943359375 0.0071868896484375 0.00540924072265625 0.0068511962890625 0.004940032958984375 0.00740814208984375 0.006267547607421875 0.0067901611328125 0.0050201416015625 0.006439208984375 0.00514984130859375 0.0063018798828125 0.00565338134765625 (tensor(69.1735), [0, 1, 1, 1, 2, 2, 2, 0, 1, 2, 2])