Commit 2e55888c by TeacherZhu

Update README.md

parent 7658efd8
...@@ -5,9 +5,9 @@ ...@@ -5,9 +5,9 @@
|---------|---------|---------|---------|---------|---------|---------| |---------|---------|---------|---------|---------|---------|---------|
| PART 0 前期基础复习(机器学习与凸优化)| | PART 0 前期基础复习(机器学习与凸优化)|
| 2月22日(周六) 10:00AM | (直播-Lecture) <br>算法复杂度,动态规划,DTW | <br>时间/空间复杂度的分析、 <br>Master's Theorem(主定理), <br> v递归程序的时间复杂度 <br>与空间复杂度、 <br>动态规划算法介绍、 <br>编辑距离的计算、 <br>DTW的技术与应用, <br>Hamming Distance以及 <br>Semantic Hashing |[课件](http://47.94.6.102/NLPCamp6/course-info/blob/master/%E8%AF%BE%E4%BB%B6/slide-clear%20%200222Lecture1.pptx) | [[博客]十分钟搞定时间复杂度](https://www.jianshu.com/p/f4cca5ce055a)<br/>[[博客] Dynamic Programming – Edit Distance Problem](https://algorithms.tutorialhorizon.com/dynamic-programming-edit-distance-problem/)<br/>[[材料]Master's Theorem](http://people.csail.mit.edu/thies/6.046-web/master.pdf)<br/>[Introduction to Algorithm (MIT Press)](http://ressources.unisciel.fr/algoprog/s00aaroot/aa00module1/res/%5BCormen-AL2011%5DIntroduction_To_Algorithms-A3.pdf)<br/>||| | 2月22日(周六) 10:00AM | (直播-Lecture) <br>算法复杂度,动态规划,DTW | <br>时间/空间复杂度的分析、 <br>Master's Theorem(主定理), <br> v递归程序的时间复杂度 <br>与空间复杂度、 <br>动态规划算法介绍、 <br>编辑距离的计算、 <br>DTW的技术与应用, <br>Hamming Distance以及 <br>Semantic Hashing |[课件](http://47.94.6.102/NLPCamp6/course-info/blob/master/%E8%AF%BE%E4%BB%B6/slide-clear%20%200222Lecture1.pptx) | [[博客]十分钟搞定时间复杂度](https://www.jianshu.com/p/f4cca5ce055a)<br/>[[博客] Dynamic Programming – Edit Distance Problem](https://algorithms.tutorialhorizon.com/dynamic-programming-edit-distance-problem/)<br/>[[材料]Master's Theorem](http://people.csail.mit.edu/thies/6.046-web/master.pdf)<br/>[Introduction to Algorithm (MIT Press)](http://ressources.unisciel.fr/algoprog/s00aaroot/aa00module1/res/%5BCormen-AL2011%5DIntroduction_To_Algorithms-A3.pdf)<br/>|||
| TBD | (直播-Discussion) <br>经典数据结构与算法 |Divide and Conquer技术以及应用||||| | 2月29日(周六) 10:00AM |(直播-Lecture) <br>逻辑回归与正则|逻辑回归模型 <br>,GD, SGD,Distributed SGD, <br>过拟合与正则, <br>L1,L2, <br> LASSO, <br>Ridge Regression, <br>Hyperparameter Tuning <br>(Grid Search/Heuristic Search), <br> ElasticNet||[Matrix Cookbook](https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf)<br/>[ElasticNet](https://web.stanford.edu/~hastie/Papers/elasticnet.pdf)<br/>|||
| TBD | (直播-Discussion) <br>经典数据结构与算法 |哈希表,搜索树,堆(优先堆)||||| | 3月1日 (周日) 11:00AM | (直播-Discussion) <br>经典数据结构与算法 |Divide and Conquer技术以及应用|||||
| TBD |(直播-Lecture) <br>逻辑回归与正则|逻辑回归模型 <br>,GD, SGD,Distributed SGD, <br>过拟合与正则, <br>L1,L2, <br> LASSO, <br>Ridge Regression, <br>Hyperparameter Tuning <br>(Grid Search/Heuristic Search), <br> ElasticNet||[Matrix Cookbook](https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf)<br/>[ElasticNet](https://web.stanford.edu/~hastie/Papers/elasticnet.pdf)<br/>||| | 3月1日 (周日) 3:30PM | (直播-Discussion) <br>经典数据结构与算法 |哈希表,搜索树,堆(优先堆)|||||
| TBD | (直播-Discussion) <br>机器学习回顾(1) | 决策树,随机森林 ||||| | TBD | (直播-Discussion) <br>机器学习回顾(1) | 决策树,随机森林 |||||
| TBD | (直播-Paper) <br>第一篇论文讲解 |||||| | TBD | (直播-Paper) <br>第一篇论文讲解 ||||||
| TBD | (直播-Lecture) <br>XGBoost | XGBoost核心算法讲解|||| | TBD | (直播-Lecture) <br>XGBoost | XGBoost核心算法讲解||||
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment