Commit 15394505 by 20200116038

clustering_analysis-master

parent f03df26e
{
"cells": [],
"metadata": {},
"nbformat": 4,
"nbformat_minor": 2
}
This diff is collapsed. Click to expand it.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
CustomerID,Gender,Age,Annual Income (k$),Spending Score (1-100)
1,Male,19,15,39
2,Male,21,15,81
3,Female,20,16,6
4,Female,23,16,77
5,Female,31,17,40
6,Female,22,17,76
7,Female,35,18,6
8,Female,23,18,94
9,Male,64,19,3
10,Female,30,19,72
11,Male,67,19,14
12,Female,35,19,99
13,Female,58,20,15
14,Female,24,20,77
15,Male,37,20,13
16,Male,22,20,79
17,Female,35,21,35
18,Male,20,21,66
19,Male,52,23,29
20,Female,35,23,98
21,Male,35,24,35
22,Male,25,24,73
23,Female,46,25,5
24,Male,31,25,73
25,Female,54,28,14
26,Male,29,28,82
27,Female,45,28,32
28,Male,35,28,61
29,Female,40,29,31
30,Female,23,29,87
31,Male,60,30,4
32,Female,21,30,73
33,Male,53,33,4
34,Male,18,33,92
35,Female,49,33,14
36,Female,21,33,81
37,Female,42,34,17
38,Female,30,34,73
39,Female,36,37,26
40,Female,20,37,75
41,Female,65,38,35
42,Male,24,38,92
43,Male,48,39,36
44,Female,31,39,61
45,Female,49,39,28
46,Female,24,39,65
47,Female,50,40,55
48,Female,27,40,47
49,Female,29,40,42
50,Female,31,40,42
51,Female,49,42,52
52,Male,33,42,60
53,Female,31,43,54
54,Male,59,43,60
55,Female,50,43,45
56,Male,47,43,41
57,Female,51,44,50
58,Male,69,44,46
59,Female,27,46,51
60,Male,53,46,46
61,Male,70,46,56
62,Male,19,46,55
63,Female,67,47,52
64,Female,54,47,59
65,Male,63,48,51
66,Male,18,48,59
67,Female,43,48,50
68,Female,68,48,48
69,Male,19,48,59
70,Female,32,48,47
71,Male,70,49,55
72,Female,47,49,42
73,Female,60,50,49
74,Female,60,50,56
75,Male,59,54,47
76,Male,26,54,54
77,Female,45,54,53
78,Male,40,54,48
79,Female,23,54,52
80,Female,49,54,42
81,Male,57,54,51
82,Male,38,54,55
83,Male,67,54,41
84,Female,46,54,44
85,Female,21,54,57
86,Male,48,54,46
87,Female,55,57,58
88,Female,22,57,55
89,Female,34,58,60
90,Female,50,58,46
91,Female,68,59,55
92,Male,18,59,41
93,Male,48,60,49
94,Female,40,60,40
95,Female,32,60,42
96,Male,24,60,52
97,Female,47,60,47
98,Female,27,60,50
99,Male,48,61,42
100,Male,20,61,49
101,Female,23,62,41
102,Female,49,62,48
103,Male,67,62,59
104,Male,26,62,55
105,Male,49,62,56
106,Female,21,62,42
107,Female,66,63,50
108,Male,54,63,46
109,Male,68,63,43
110,Male,66,63,48
111,Male,65,63,52
112,Female,19,63,54
113,Female,38,64,42
114,Male,19,64,46
115,Female,18,65,48
116,Female,19,65,50
117,Female,63,65,43
118,Female,49,65,59
119,Female,51,67,43
120,Female,50,67,57
121,Male,27,67,56
122,Female,38,67,40
123,Female,40,69,58
124,Male,39,69,91
125,Female,23,70,29
126,Female,31,70,77
127,Male,43,71,35
128,Male,40,71,95
129,Male,59,71,11
130,Male,38,71,75
131,Male,47,71,9
132,Male,39,71,75
133,Female,25,72,34
134,Female,31,72,71
135,Male,20,73,5
136,Female,29,73,88
137,Female,44,73,7
138,Male,32,73,73
139,Male,19,74,10
140,Female,35,74,72
141,Female,57,75,5
142,Male,32,75,93
143,Female,28,76,40
144,Female,32,76,87
145,Male,25,77,12
146,Male,28,77,97
147,Male,48,77,36
148,Female,32,77,74
149,Female,34,78,22
150,Male,34,78,90
151,Male,43,78,17
152,Male,39,78,88
153,Female,44,78,20
154,Female,38,78,76
155,Female,47,78,16
156,Female,27,78,89
157,Male,37,78,1
158,Female,30,78,78
159,Male,34,78,1
160,Female,30,78,73
161,Female,56,79,35
162,Female,29,79,83
163,Male,19,81,5
164,Female,31,81,93
165,Male,50,85,26
166,Female,36,85,75
167,Male,42,86,20
168,Female,33,86,95
169,Female,36,87,27
170,Male,32,87,63
171,Male,40,87,13
172,Male,28,87,75
173,Male,36,87,10
174,Male,36,87,92
175,Female,52,88,13
176,Female,30,88,86
177,Male,58,88,15
178,Male,27,88,69
179,Male,59,93,14
180,Male,35,93,90
181,Female,37,97,32
182,Female,32,97,86
183,Male,46,98,15
184,Female,29,98,88
185,Female,41,99,39
186,Male,30,99,97
187,Female,54,101,24
188,Male,28,101,68
189,Female,41,103,17
190,Female,36,103,85
191,Female,34,103,23
192,Female,32,103,69
193,Male,33,113,8
194,Female,38,113,91
195,Female,47,120,16
196,Female,35,120,79
197,Female,45,126,28
198,Male,32,126,74
199,Male,32,137,18
200,Male,30,137,83
# Biplot
import matplotlib.pyplot as plt
import numpy as np
def biplot(score, coeff, labels=None):
xs = score[:,0]
ys = score[:,1]
n = coeff.shape[0]
scalex = 1.0/(xs.max()- xs.min())
scaley = 1.0/(ys.max()- ys.min())
plt.scatter(xs*scalex,ys*scaley, color="#c7e9c0", edgecolor="#006d2c", alpha=0.5)
for i in range(n):
plt.arrow(0, 0, coeff[i,0], coeff[i,1],color='#253494',alpha=0.5,lw=2)
if labels is None:
plt.text(coeff[i,0]* 1.15, coeff[i,1] * 1.15, "Var"+str(i+1), color="#000000", ha="center", va="center")
else:
plt.text(coeff[i,0]* 1.15, coeff[i,1] * 1.15, labels[i], color="#000000", ha="center", va="center")
plt.xlim(-.75,1)
plt.ylim(-0.5,1)
plt.grid(False)
plt.xticks(np.arange(0, 1, 0.5), size=12)
plt.yticks(np.arange(-0.75, 1, 0.5), size=12)
plt.xlabel("Component 1", size=14)
plt.ylabel("Component 2", size=14)
plt.gca().spines["top"].set_visible(False);
plt.gca().spines["right"].set_visible(False);
\ No newline at end of file
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment