Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
H
homework2_dialog_project
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
20220418012
homework2_dialog_project
Commits
91204af0
Commit
91204af0
authored
Jul 15, 2022
by
20220418012
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Upload New File
parent
5059efba
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
230 additions
and
0 deletions
+230
-0
NLG/model/model_multi_input.py
+230
-0
No files found.
NLG/model/model_multi_input.py
0 → 100644
View file @
91204af0
import
random
import
torch
import
torch.nn
as
nn
import
torch.nn.functional
as
F
from
.transformer_module
import
TransformerModule
class
MultiInputModel
(
nn
.
Module
):
def
__init__
(
self
,
config
,
vocab
,
n_segments
=
None
):
super
(
MultiInputModel
,
self
)
.
__init__
()
self
.
config
=
config
self
.
vocab
=
vocab
self
.
transformer_module
=
TransformerModule
(
config
.
n_layers
,
len
(
vocab
),
config
.
n_pos_embeddings
,
config
.
embeddings_size
,
vocab
.
pad_id
,
config
.
n_heads
,
config
.
dropout
,
config
.
embed_dropout
,
config
.
attn_dropout
,
config
.
ff_dropout
,
n_segments
)
self
.
pre_softmax
=
nn
.
Linear
(
config
.
embeddings_size
,
len
(
vocab
),
bias
=
False
)
self
.
pre_softmax
.
weight
=
self
.
transformer_module
.
embeddings
.
weight
def
forward
(
self
,
x
,
contexts
=
[]):
enc_contexts
=
[
self
.
encode
(
c
)
for
c
in
contexts
]
return
self
.
decode
(
x
,
enc_contexts
)
def
encode
(
self
,
x
):
return
self
.
transformer_module
(
x
)
def
generate
(
self
,
enc_x
):
return
self
.
pre_softmax
(
enc_x
)
def
decode
(
self
,
x
,
enc_contexts
=
[]):
x
,
_
=
self
.
transformer_module
(
x
,
enc_contexts
)
return
self
.
generate
(
x
)
def
predict
(
self
,
contexts
=
[]):
enc_contexts
=
[
self
.
encode
(
c
)
for
c
in
contexts
]
prediction
=
self
.
beam_search
(
enc_contexts
)
return
prediction
def
predict_beam
(
self
,
contexts
=
[]):
enc_contexts
=
[
self
.
encode
(
c
)
for
c
in
contexts
]
prediction
=
self
.
beam_search
(
enc_contexts
,
return_beams
=
True
)
return
prediction
def
_length_penalty
(
self
,
sequence_lengths
):
"""https://arxiv.org/abs/1609.08144"""
return
(
5
+
sequence_lengths
)
**
self
.
config
.
length_penalty
/
(
5
+
1
)
**
self
.
config
.
length_penalty
def
predict_next
(
self
,
enc_contexts
=
[],
return_beams
=
False
,
prefix
=
[]):
with
torch
.
no_grad
():
if
len
(
enc_contexts
)
==
0
:
return
[]
batch_size
=
enc_contexts
[
0
][
0
]
.
shape
[
0
]
device
=
next
(
self
.
parameters
())
.
device
ind
=
len
(
prefix
)
if
ind
:
assert
batch_size
==
1
prefix_sentence
=
[
self
.
vocab
.
bos_id
]
+
prefix
prevs
=
torch
.
LongTensor
(
prefix_sentence
)
.
to
(
device
)
prevs
=
prevs
.
expand
(
self
.
config
.
beam_size
,
ind
+
1
)
else
:
prevs
=
torch
.
full
((
batch_size
*
self
.
config
.
beam_size
,
1
),
fill_value
=
self
.
vocab
.
bos_id
,
dtype
=
torch
.
long
,
device
=
device
)
beam_enc_contexts
=
[]
for
c
,
p
in
enc_contexts
:
c
=
c
.
unsqueeze
(
1
)
.
repeat
(
1
,
self
.
config
.
beam_size
,
1
,
1
)
c
=
c
.
view
(
-
1
,
c
.
shape
[
2
],
c
.
shape
[
3
])
p
=
p
.
unsqueeze
(
1
)
.
repeat
(
1
,
self
.
beam_size
,
1
)
p
=
p
.
view
(
-
1
,
p
.
shape
[
2
])
beam_enc_contexts
.
append
((
c
,
p
))
outputs
,
_
=
self
.
transformer_module
(
prevs
,
beam_enc_contexts
)
logits
=
self
.
generate
(
outputs
[:,
-
1
,
:])
probs
=
F
.
softmax
(
logits
,
dim
=-
1
)
return
probs
[
0
]
.
tolist
()
def
beam_search
(
self
,
enc_contexts
=
[],
return_beams
=
False
):
with
torch
.
no_grad
():
if
len
(
enc_contexts
)
==
0
:
return
[]
batch_size
=
enc_contexts
[
0
][
0
]
.
shape
[
0
]
device
=
next
(
self
.
parameters
())
.
device
prevs
=
torch
.
full
((
batch_size
*
self
.
config
.
beam_size
,
1
),
fill_value
=
self
.
vocab
.
bos_id
,
dtype
=
torch
.
long
,
device
=
device
)
beam_scores
=
torch
.
zeros
(
batch_size
,
self
.
config
.
beam_size
,
device
=
device
)
beam_lens
=
torch
.
ones
(
batch_size
,
self
.
config
.
beam_size
,
dtype
=
torch
.
long
,
device
=
device
)
is_end
=
torch
.
zeros
(
batch_size
,
self
.
config
.
beam_size
,
dtype
=
torch
.
uint8
,
device
=
device
)
beam_enc_contexts
=
[]
for
c
,
p
in
enc_contexts
:
c
=
c
.
unsqueeze
(
1
)
.
repeat
(
1
,
self
.
config
.
beam_size
,
1
,
1
)
c
=
c
.
view
(
-
1
,
c
.
shape
[
2
],
c
.
shape
[
3
])
p
=
p
.
unsqueeze
(
1
)
.
repeat
(
1
,
self
.
config
.
beam_size
,
1
)
p
=
p
.
view
(
-
1
,
p
.
shape
[
2
])
beam_enc_contexts
.
append
((
c
,
p
))
current_sample_prob
=
1
group_size
=
self
.
config
.
beam_size
//
self
.
config
.
diversity_groups
diversity_penalty
=
torch
.
zeros
((
batch_size
,
len
(
self
.
vocab
)),
device
=
device
)
repeat
=
[{}
for
i
in
range
(
batch_size
*
self
.
config
.
beam_size
)]
for
i
in
range
(
self
.
config
.
max_seq_len
):
outputs
,
_
=
self
.
transformer_module
(
prevs
,
beam_enc_contexts
)
logits
=
self
.
generate
(
outputs
[:,
-
1
,
:])
log_probs
=
F
.
log_softmax
(
logits
,
dim
=-
1
)
for
idx
in
range
(
batch_size
*
self
.
config
.
beam_size
):
for
key
in
repeat
[
idx
]:
for
value
in
repeat
[
idx
][
key
]:
log_probs
[
idx
][
value
]
=
-
1000
log_probs
=
log_probs
.
view
(
batch_size
,
self
.
config
.
beam_size
,
-
1
)
beam_scores
=
beam_scores
.
unsqueeze
(
-
1
)
+
log_probs
*
(
1
-
is_end
.
float
()
.
unsqueeze
(
-
1
))
ba
,
be
,
dim
=
beam_scores
.
shape
for
ba_idx
in
range
(
ba
):
for
be_idx
in
range
(
be
):
if
int
(
torch
.
max
(
beam_scores
[
ba_idx
][
be_idx
])
==
torch
.
min
(
beam_scores
[
ba_idx
][
be_idx
])):
temp
=
float
(
beam_scores
[
ba_idx
][
be_idx
][
0
])
beam_scores
[
ba_idx
][
be_idx
]
=
-
float
(
'inf'
)
beam_scores
[
ba_idx
][
be_idx
][
0
]
=
temp
penalty
=
self
.
_length_penalty
(
beam_lens
.
float
()
+
1
-
is_end
.
float
())
penalty
=
penalty
.
unsqueeze
(
-
1
)
.
repeat
(
1
,
1
,
len
(
self
.
vocab
))
beam_scores
=
beam_scores
/
penalty
if
i
==
0
:
penalty
=
penalty
[:,
0
,
:]
beam_scores
=
beam_scores
[:,
0
,
:]
beam_scores
,
idxs
=
beam_scores
.
topk
(
self
.
config
.
beam_size
,
dim
=-
1
)
beam_idxs
=
torch
.
zeros
((
batch_size
,
self
.
config
.
beam_size
),
dtype
=
torch
.
long
,
device
=
device
)
else
:
penalty
=
penalty
.
view
(
batch_size
,
self
.
config
.
diversity_groups
,
group_size
,
-
1
)
beam_scores
=
beam_scores
.
view
(
batch_size
,
self
.
config
.
diversity_groups
,
group_size
,
-
1
)
all_scores
,
all_idxs
=
[],
[]
for
g
in
range
(
self
.
config
.
diversity_groups
):
g_beam_scores
=
beam_scores
[:,
g
,
:,
:]
g_penalty
=
penalty
[:,
g
,
:,
:]
g_beam_scores
-=
self
.
config
.
diversity_coef
*
diversity_penalty
.
unsqueeze
(
1
)
/
g_penalty
g_beam_scores
=
g_beam_scores
.
view
(
batch_size
,
-
1
)
if
random
.
random
()
<
current_sample_prob
:
beam_probas
=
F
.
softmax
(
g_beam_scores
/
self
.
config
.
temperature
,
dim
=-
1
)
if
self
.
config
.
annealing_topk
is
not
None
:
beam_probas
,
sample_idxs
=
beam_probas
.
topk
(
self
.
config
.
annealing_topk
,
dim
=-
1
)
g_idxs
=
torch
.
multinomial
(
beam_probas
,
group_size
)
g_idxs
=
torch
.
gather
(
sample_idxs
,
1
,
g_idxs
)
else
:
g_idxs
=
torch
.
multinomial
(
beam_probas
,
group_size
)
else
:
_
,
g_idxs
=
g_beam_scores
.
topk
(
group_size
,
dim
=-
1
)
g_scores
=
torch
.
gather
(
beam_scores
[:,
g
,
:,
:]
.
view
(
batch_size
,
-
1
),
1
,
g_idxs
)
g_idxs
+=
g
*
group_size
*
len
(
self
.
vocab
)
all_scores
.
append
(
g_scores
)
all_idxs
.
append
(
g_idxs
)
diversity_penalty
.
scatter_add_
(
1
,
torch
.
fmod
(
g_idxs
,
len
(
self
.
vocab
)),
torch
.
ones
((
batch_size
,
group_size
),
device
=
device
))
diversity_penalty
.
fill_
(
0
)
penalty
=
penalty
.
view
(
batch_size
,
-
1
)
beam_scores
=
torch
.
cat
(
all_scores
,
dim
=-
1
)
idxs
=
torch
.
cat
(
all_idxs
,
dim
=-
1
)
beam_idxs
=
(
idxs
.
float
()
/
len
(
self
.
vocab
))
.
long
()
penalty
=
torch
.
gather
(
penalty
,
1
,
idxs
)
sym_idxs
=
torch
.
fmod
(
idxs
,
log_probs
.
shape
[
-
1
])
is_end
=
torch
.
gather
(
is_end
,
1
,
beam_idxs
)
.
bool
()
beam_lens
=
torch
.
gather
(
beam_lens
,
1
,
beam_idxs
)
sym_idxs
[
is_end
]
=
self
.
vocab
.
pad_id
beam_lens
[
~
is_end
]
+=
1
is_end
[
sym_idxs
==
self
.
vocab
.
eos_id
]
=
1
sym_idxs
=
sym_idxs
.
view
(
batch_size
*
self
.
config
.
beam_size
,
1
)
prevs
=
prevs
.
view
(
batch_size
,
self
.
config
.
beam_size
,
-
1
)
prevs
=
torch
.
gather
(
prevs
,
1
,
beam_idxs
.
unsqueeze
(
-
1
)
.
repeat
(
1
,
1
,
prevs
.
shape
[
-
1
]))
prevs
=
prevs
.
view
(
batch_size
*
self
.
config
.
beam_size
,
-
1
)
prevs
=
torch
.
cat
([
prevs
,
sym_idxs
],
dim
=
1
)
prevs_list
=
prevs
.
tolist
()
for
b
in
range
(
batch_size
*
self
.
config
.
beam_size
):
b_list
=
prevs_list
[
b
]
if
len
(
b_list
)
>
2
and
b_list
[
-
1
]
!=
self
.
vocab
.
pad_id
and
b_list
[
-
1
]
!=
self
.
vocab
.
eos_id
:
key
=
(
int
(
b_list
[
-
3
]),
int
(
b_list
[
-
2
]))
if
key
in
repeat
[
b
]:
repeat
[
b
][
key
]
.
append
(
int
(
b_list
[
-
1
]))
else
:
repeat
[
b
][
key
]
=
[
int
(
b_list
[
-
1
])]
if
all
(
is_end
.
view
(
-
1
)):
break
beam_scores
*=
penalty
current_sample_prob
*=
self
.
config
.
annealing
predicts
=
[]
result
=
prevs
.
view
(
batch_size
,
self
.
config
.
beam_size
,
-
1
)
if
return_beams
:
bests
=
torch
.
argsort
(
beam_scores
,
dim
=-
1
,
descending
=
True
)
for
i
in
range
(
batch_size
):
temp
=
[]
for
j
in
range
(
self
.
config
.
beam_size
):
best_len
=
beam_lens
[
i
,
bests
[
i
][
j
]]
best_seq
=
result
[
i
,
bests
[
i
][
j
],
1
:
best_len
-
1
]
temp
.
append
(
best_seq
.
tolist
())
predicts
.
append
(
temp
)
return
predicts
if
self
.
config
.
sample
:
probs
=
F
.
softmax
(
beam_scores
,
dim
=-
1
)
bests
=
torch
.
multinomial
(
probs
,
1
)
.
view
(
-
1
)
else
:
bests
=
beam_scores
.
argmax
(
dim
=-
1
)
for
i
in
range
(
batch_size
):
best_len
=
beam_lens
[
i
,
bests
[
i
]]
best_seq
=
result
[
i
,
bests
[
i
],
1
:
best_len
-
1
]
predicts
.
append
(
best_seq
.
tolist
())
return
predicts
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment