Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
H
homework2_dialog_project
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
20220418012
homework2_dialog_project
Commits
796b2c44
Commit
796b2c44
authored
Jul 15, 2022
by
20220418012
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Upload New File
parent
68aaf62a
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
133 additions
and
0 deletions
+133
-0
NLG/train.py
+133
-0
No files found.
NLG/train.py
0 → 100644
View file @
796b2c44
import
os
import
torch
import
random
import
traceback
import
model.utils
as
utils
import
model.dataset
as
dataset
from
model.model_multi_input
import
MultiInputModel
from
model.trainer_multi_input
import
Trainer
from
model.text
import
Vocab
import
re
from
torch.nn.parallel
import
DistributedDataParallel
import
argparse
parser
=
argparse
.
ArgumentParser
()
parser
.
add_argument
(
'--config'
,
help
=
'config file'
,
default
=
'/home/data/tmp/NLP_Course/GPT_Dialog_model/config.json'
)
parser
.
add_argument
(
'--gpu'
,
help
=
'which gpu to use'
,
type
=
str
,
default
=
'1'
)
parser
.
add_argument
(
"--local_rank"
,
help
=
'used for distributed training'
,
type
=
int
,
default
=-
1
)
args
=
parser
.
parse_args
()
config
=
utils
.
load_config
(
args
.
config
)
config_path
=
os
.
path
.
dirname
(
args
.
config
)
logger
=
utils
.
get_logger
(
os
.
path
.
join
(
config_path
,
'main.log'
))
train_dir
=
os
.
path
.
join
(
config_path
,
config
[
'train_dir'
])
data_dir
=
os
.
path
.
join
(
config_path
,
config
[
'data_dir'
])
eval_dir
=
os
.
path
.
join
(
config_path
,
config
[
'eval_dir'
])
log_dir
=
os
.
path
.
join
(
config_path
,
config
[
'log_dir'
])
best_model
=
os
.
path
.
join
(
config_path
,
config
[
'best_dir'
])
os
.
environ
[
'CUDA_VISIBLE_DEVICES'
]
=
args
.
gpu
# helpers -----------------------------------------------------
def
save_func
(
epoch
,
device
):
filename
=
utils
.
get_ckpt_filename
(
'model'
,
epoch
)
torch
.
save
(
trainer
.
state_dict
(),
os
.
path
.
join
(
train_dir
,
filename
))
if
os
.
path
.
exists
(
os
.
path
.
join
(
train_dir
,
utils
.
get_ckpt_filename
(
'model'
,
epoch
-
80
))):
os
.
remove
(
os
.
path
.
join
(
train_dir
,
utils
.
get_ckpt_filename
(
'model'
,
epoch
-
80
)))
def
sample_text_func
(
epoch
,
device
):
n_samples
=
8
samples_idxs
=
random
.
sample
(
range
(
len
(
valid_dataset
)),
n_samples
)
samples
=
[
valid_dataset
[
idx
]
for
idx
in
samples_idxs
]
for
i
,
data
in
enumerate
(
samples
):
contexts
=
[
torch
.
tensor
([
data
[
'post'
]],
dtype
=
torch
.
long
,
device
=
device
)]
prediction
=
trainer
.
model
.
predict
(
contexts
)[
0
]
post_str
=
vocab
.
ids2string
(
data
[
'post'
][
1
:
-
1
])
resp_str
=
vocab
.
ids2string
(
data
[
'resp'
][
1
:
-
1
])
pred_str
=
vocab
.
ids2string
(
prediction
)
logger
.
info
(
'-------epoch {} sample {}---------'
.
format
(
epoch
,
i
))
logger
.
info
(
'post: {}'
.
format
(
post_str
))
logger
.
info
(
'resp: {}'
.
format
(
resp_str
))
logger
.
info
(
'pred: {}'
.
format
(
pred_str
))
# helpers -----------------------------------------------------
try
:
if
args
.
local_rank
==
-
1
or
args
.
local_rank
==
0
:
logger
.
info
(
'pytorch version: {}'
.
format
(
torch
.
__version__
))
for
i
in
config
:
logger
.
info
(
'{}: {}'
.
format
(
i
,
config
[
i
]))
for
i
in
vars
(
args
):
logger
.
info
(
'{}: {}'
.
format
(
i
,
getattr
(
args
,
i
)))
dirs
=
[
train_dir
,
eval_dir
,
log_dir
,
best_model
]
for
d
in
dirs
:
if
not
os
.
path
.
isdir
(
d
):
logger
.
info
(
'cannot find {}, mkdiring'
.
format
(
d
))
os
.
makedirs
(
d
)
# code for distributed training
distributed
=
(
args
.
local_rank
!=
-
1
)
if
distributed
:
print
(
args
.
local_rank
)
torch
.
cuda
.
set_device
(
args
.
local_rank
)
device
=
torch
.
device
(
"cuda"
,
args
.
local_rank
)
torch
.
distributed
.
init_process_group
(
backend
=
'nccl'
,
init_method
=
'env://'
)
torch
.
manual_seed
(
config
.
seed
)
else
:
device
=
torch
.
device
(
"cuda"
,
0
)
vocab
=
Vocab
(
config
.
vocab_path
)
train_dataset
=
dataset
.
DialogDataset
([
os
.
path
.
join
(
data_dir
,
config
.
train_data
)],
vocab
,
logger
,
config
.
max_seq_len
-
1
)
valid_dataset
=
dataset
.
DialogDataset
([
os
.
path
.
join
(
data_dir
,
config
.
valid_data
)],
vocab
,
logger
,
config
.
max_seq_len
-
1
)
logger
.
info
(
'Building models'
)
model
=
MultiInputModel
(
config
,
vocab
)
for
name
,
param
in
model
.
named_parameters
():
if
param
.
requires_grad
:
print
(
name
,
param
.
shape
)
latest_ckpt
=
utils
.
get_latest_ckpt
(
train_dir
)
if
latest_ckpt
is
None
:
# start from scratch
logger
.
info
(
'start from CGPT weights'
)
cgpt_model
=
torch
.
load
(
config
.
cgpt_parameters_dir
,
map_location
=
device
)
cgpt_model
.
pop
(
'decoder.pre_softmax.weight'
)
b
=
list
(
cgpt_model
.
keys
())
for
i
in
b
:
cgpt_model
[
i
.
split
(
'.'
,
1
)[
1
]]
=
cgpt_model
.
pop
(
i
)
model
.
transformer_module
.
load_state_dict
(
cgpt_model
,
strict
=
True
)
logger
.
info
(
'CGPT weights loaded from {}'
.
format
(
config
.
cgpt_parameters_dir
))
trainer
=
Trainer
(
model
,
train_dataset
,
valid_dataset
,
config
,
log_dir
,
logger
,
device
,
vocab
.
special_tokens_ids
,
distributed
=
distributed
)
if
distributed
:
trainer
.
model
.
transformer_module
=
DistributedDataParallel
(
trainer
.
model
.
transformer_module
,
device_ids
=
[
args
.
local_rank
],
output_device
=
args
.
local_rank
)
start_epoch
=
0
if
latest_ckpt
is
not
None
:
logger
.
info
(
'Weights loading from {}'
.
format
(
os
.
path
.
join
(
train_dir
,
latest_ckpt
)))
start_epoch
=
utils
.
get_epoch_from_ckpt
(
latest_ckpt
)
trainer
.
load_state_dict
(
torch
.
load
(
os
.
path
.
join
(
train_dir
,
latest_ckpt
),
map_location
=
device
))
try
:
if
args
.
local_rank
in
[
-
1
,
0
]:
trainer
.
train
(
start_epoch
,
config
.
n_epochs
,
after_epoch_funcs
=
[
save_func
])
else
:
trainer
.
train
(
start_epoch
,
config
.
n_epochs
)
# model_trainer.train(trainer_config.n_epochs, after_epoch_funcs=[sample_text_func], risk_func=f1_risk)
except
(
KeyboardInterrupt
,
Exception
,
RuntimeError
)
as
e
:
torch
.
save
(
trainer
.
state_dict
(),
os
.
path
.
join
(
train_dir
,
'interrupt.pt'
))
raise
e
except
:
logger
.
error
(
traceback
.
format_exc
())
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment