Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
H
homework2_dialog_project
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
20220418012
homework2_dialog_project
Commits
10897314
Commit
10897314
authored
Jul 15, 2022
by
20220418012
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Upload New File
parent
6f779620
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
109 additions
and
0 deletions
+109
-0
NLU/dataset.py
+109
-0
No files found.
NLU/dataset.py
0 → 100644
View file @
10897314
from
torch.utils.data
import
Dataset
import
torch
class
NLUDataset
(
Dataset
):
def
__init__
(
self
,
paths
,
tokz
,
cls_vocab
,
slot_vocab
,
logger
,
max_lengths
=
2048
):
self
.
logger
=
logger
self
.
data
=
NLUDataset
.
make_dataset
(
paths
,
tokz
,
cls_vocab
,
slot_vocab
,
logger
,
max_lengths
)
@staticmethod
def
make_dataset
(
paths
,
tokz
,
cls_vocab
,
slot_vocab
,
logger
,
max_lengths
):
logger
.
info
(
'reading data from {}'
.
format
(
paths
))
dataset
=
[]
#######################################################
# TODO: Complete the following function.
# The output of this function is a list. Each element of this list
# is a tuple consists of
# (intent_id, utterance_token_id_list, token_type_id, slot_id_list)
# intent_id: id for the intent
# utterance_token_id_list: id list for each token in the utterance
# token_type_id: token type id used for BERT
# slot_id_list: id list for all the slots
#######################################################
for
path
in
paths
:
with
open
(
path
,
"r"
,
encoding
=
"utf8"
)
as
fp
:
lines
=
[
line
.
strip
()
.
lower
()
for
line
in
fp
.
readlines
()
if
len
(
line
.
strip
())
>
0
]
line_split
=
[
line
.
split
(
'
\t
'
)
for
line
in
lines
]
for
label
,
utt
,
slots
in
line_split
:
intent_id
=
int
(
cls_vocab
[
label
])
utt
=
tokz
.
convert_tokens_to_ids
(
list
(
utt
)[:
max_lengths
])
slots
=
[
slot_vocab
[
i
]
for
i
in
slots
.
split
()]
assert
len
(
utt
)
==
len
(
slots
)
dataset
.
append
([
intent_id
,
[
tokz
.
cls_token_id
]
+
utt
+
[
tokz
.
sep_token_id
],
tokz
.
create_token_type_ids_from_sequences
(
token_ids_0
=
utt
),
[
tokz
.
pad_token_id
]
+
slots
+
[
tokz
.
pad_token_id
]])
logger
.
info
(
'{} data record loaded'
.
format
(
len
(
dataset
)))
return
dataset
def
__len__
(
self
):
return
len
(
self
.
data
)
def
__getitem__
(
self
,
idx
):
intent
,
utt
,
token_type
,
slot
=
self
.
data
[
idx
]
return
{
"intent"
:
intent
,
"utt"
:
utt
,
"token_type"
:
token_type
,
"slot"
:
slot
}
class
PinnedBatch
:
def
__init__
(
self
,
data
):
self
.
data
=
data
def
__getitem__
(
self
,
k
):
return
self
.
data
[
k
]
def
pin_memory
(
self
):
for
k
in
self
.
data
.
keys
():
self
.
data
[
k
]
=
self
.
data
[
k
]
.
pin_memory
()
return
self
class
PadBatchSeq
:
def
__init__
(
self
,
pad_id
):
self
.
pad_id
=
pad_id
def
__call__
(
self
,
batch
):
res
=
dict
()
#######################################################
# TODO: Complete the following function.
# Pad a batch of samples into Tensors.
# The result should be a dict with the following keys:
# "intent": A 1d tensor of intent id. shape: [bs]
# "utt": A 2d tensor of token ids. Shape: [bs, max_seq_len]
# "mask": A 2d tensor of attention mask. The value of each element is either 1 (non PAD token) or 0 (PAD token). Shape: [bs, max_seq_len]
# "toke_type": A 2d tensor of token types. Shape: [bs, max_seq_len]
# "slot": A 2d tensor of slot ids. Shape: [bs, max_seq_len]
#######################################################
res
[
'intent'
]
=
torch
.
LongTensor
(
i
[
'intent'
]
for
i
in
batch
)
max_len
=
max
([
len
(
i
[
'utt'
])
for
i
in
batch
])
res
[
'utt'
]
=
torch
.
LongTensor
([
i
[
'utt'
]
+
[
self
.
pad_id
]
*
(
max_len
-
len
(
i
[
'utt'
]))
for
i
in
batch
])
res
[
'mask'
]
=
torch
.
LongTensor
([[
1
]
*
len
(
i
[
'utt'
])
+
[
0
]
*
(
max_len
-
len
(
i
[
'utt'
]))
for
i
in
batch
])
res
[
'token_type'
]
=
torch
.
LongTensor
([
i
[
'token_type'
]
+
[
self
.
pad_id
]
*
(
max_len
-
len
(
i
[
'token_type'
]))
for
i
in
batch
])
res
[
'slot'
]
=
torch
.
LongTensor
([
i
[
'slot'
]
+
[
self
.
pad_id
]
*
(
max_len
-
len
(
i
[
'slot'
]))
for
i
in
batch
])
return
PinnedBatch
(
res
)
if
__name__
==
'__main__'
:
from
transformers
import
BertTokenizer
bert_path
=
'/home/data/tmp/bert-base-chinese'
data_file
=
'/home/data/tmp/NLP_Course/Joint_NLU/data/train.tsv'
cls_vocab_file
=
'/home/data/tmp/NLP_Course/Joint_NLU/data/cls_vocab'
slot_vocab_file
=
'/home/data/tmp/NLP_Course/Joint_NLU/data/slot_vocab'
with
open
(
cls_vocab_file
)
as
f
:
res
=
[
i
.
strip
()
for
i
in
f
.
readlines
()
if
len
(
i
.
strip
())
!=
0
]
cls_vocab
=
dict
(
zip
(
res
,
range
(
len
(
res
))))
with
open
(
slot_vocab_file
)
as
f
:
res
=
[
i
.
strip
()
for
i
in
f
.
readlines
()
if
len
(
i
.
strip
())
!=
0
]
slot_vocab
=
dict
(
zip
(
res
,
range
(
len
(
res
))))
class
Logger
:
def
info
(
self
,
s
):
print
(
s
)
logger
=
Logger
()
tokz
=
BertTokenizer
.
from_pretrained
(
bert_path
)
dataset
=
NLUDataset
([
data_file
],
tokz
,
cls_vocab
,
slot_vocab
,
logger
)
pad
=
PadBatchSeq
(
tokz
.
pad_token_id
)
print
(
pad
([
dataset
[
i
]
for
i
in
range
(
5
)]))
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment