diff --git a/README.md b/README.md
index 868b030..28305b4 100644
--- a/README.md
+++ b/README.md
@@ -34,46 +34,46 @@
 | TBD  | (直播-Discussion)  TBD||||||
 | TBD  | (直播-Discussion)  TBD||||||
 |PART 2 深度学习与预训练模型|
-|TBD  | (直播-Lecture10)   <br> CRF模型(2),深度学习基础|||[Log-linear models </br>and conditional </br>random fields</br>](http://cseweb.ucsd.edu/~elkan/250B/CRFs.pdf),</br>[An Introduction </br>to Conditional</br> Random Fields</br>](http://homepages.inf.ed.ac.uk/csutton/publications/crftut-fnt.pdf),</br>[Log-Linear Models and Conditional</br> Random Field</br>](http://cseweb.ucsd.edu/~elkan/250Bfall2007/loglinear.pdf),</br>[Generative Learning algorithms</br>](http://cs229.stanford.edu/notes/cs229-notes2.pdf),[网址](http://videolectures.net/cikm08_elkan_llmacrf/)|||
+|7月26日 (周日) 10:30AM  | (直播-Lecture9)   <br> CRF模型(2),深度学习基础|||[Log-linear models </br>and conditional </br>random fields</br>](http://cseweb.ucsd.edu/~elkan/250B/CRFs.pdf),</br>[An Introduction </br>to Conditional</br> Random Fields</br>](http://homepages.inf.ed.ac.uk/csutton/publications/crftut-fnt.pdf),</br>[Log-Linear Models and Conditional</br> Random Field</br>](http://cseweb.ucsd.edu/~elkan/250Bfall2007/loglinear.pdf),</br>[Generative Learning algorithms</br>](http://cs229.stanford.edu/notes/cs229-notes2.pdf),[网址](http://videolectures.net/cikm08_elkan_llmacrf/)|||
 |TBD  | (直播-Paper)       <br> |||||
 | TBD  | (直播-Discussion)  <br> GPU的使用与环境搭建 +  基于pytorch的简单的神经网络搭建|||[阅读资料](http://47.94.6.102/NLPCamp6/course-info/blob/master/%E8%AF%BE%E4%BB%B6/0517GPU+pytorch%E9%98%85%E8%AF%BB%E8%B5%84%E6%96%99cuda_c_chinese.pdf)|||
 | TBD  | (直播-Discussion)  <br> 对话系统技术概览||||||
-|TBD  | (直播-Lecture11)   <br> RNN, LSTM,梯度问题 |||||
+|8月2日 (周日) 10:30AM   | (直播-Lecture10)   <br> RNN, LSTM,梯度问题 |||||
 | TBD | (直播-Paper)       <br> |||||
 | TBD  | (直播-Discussion)  <br> Pytorch讲解||||||
-| TBD  | (直播-Lecture12)   <br> Seq2Seq, Attention, Pointer Network ||||||
+| 8月9日 (周日) 10:30AM   | (直播-Lecture11)   <br> Seq2Seq, Attention, Pointer Network ||||||
 | TBD | (直播-Paper)       <br> ||||||
 | TBD   | (直播-Discussion)  <br> Introduction to Transfer Learing||||||
 | TBD  | (直播-Discussion)  <br> LSTM的实现(源码讲解) ||||||
-| TBD  | (直播-Lecture13)   <br> Transformer, BERT ||||||
+| 8月16日 (周日) 10:30AM   | (直播-Lecture12)   <br> Transformer, BERT ||||||
 |TBD  | (直播-Paper)       <br> ||||||
 | TBD  | (直播-Discussion)  <br> 基于Transformer的机器翻译||||||
 | TBD  | (直播-Discussion)  <br> BERT的训练与实战||||||
-| TBD | (直播-Lecture14)   <br> GPT, XLNet |||||
+| 8月23日 (周日) 10:30AM  | (直播-Lecture13)   <br> GPT, XLNet |||||
 | TBD  | (直播-Discussion)  <br> XLNET应用在文本分类和QA系统||||||
 | TBD | (直播-Discussion)  <br> XLNET源码讲解||||||
 | TBD  | (直播-Paper)       <br> ||||||
 | PART 3  信息抽取与图挖掘相关|
-| TBD  | (直播-Lecture15)   <br> 信息抽取(1) |利用传统方法论解决命名实体识别,实体统一,实体消歧,关系抽取问题|||||
+| 8月30日 (周日) 10:30AM  | (直播-Lecture14)   <br> 信息抽取(1) |利用传统方法论解决命名实体识别,实体统一,实体消歧,关系抽取问题|||||
 | TBD | (直播-Paper)       <br> ||||||
 | TBD  | (直播-Discussion)  <br> 命名实体识别代码实战:BERT-BILSTM-CRF||||||
 | TBD   | (直播-Discussion)  <br> ALBERT |||[ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942)||
 | TBD   | (直播-Discussion)  <br> 项目二讲解||||||
-| TBD  | (直播-Lecture16)   <br> 信息抽取(2)|利用深度学习解决命名实体识别,实体统一,实体消歧,关系抽取问题|)||||
+| 9月6日 (周日) 10:30AM   | (直播-Lecture15)   <br> 信息抽取(2)|利用深度学习解决命名实体识别,实体统一,实体消歧,关系抽取问题|||||
 | TBD  | (直播-Paper)       <br> ||||
 | TBD  | (直播-Discussion)  <br> 依存文法分析(Dependency Parsing) |||||
 | TBD   | (直播-Discussion)  <br> 句法分析(Parsing)和CKY算法 |||||
-| TBD  | (直播-Lecture17)   <br> 知识图谱 |知识图的概念,搭建,应用场景||||
+| 9月13日 (周日) 10:30AM  | (直播-Lecture16)   <br> 知识图谱 |知识图的概念,搭建,应用场景||||
 | TBD  | (直播-Paper)       <br> ||||||
 | TBD   | (直播-Discussion)  <br> 知识图谱在推荐系统中的应用 |||||
 | TBD  | (直播-Discussion)  <br> project3 项目讲解 |||||
-| TBD  | (直播-Lecture18)   <br> 图神经网络 |图卷积审计网络,GraphSage, GAT||||
+| 9月20日 (周日) 10:30AM  | (直播-Lecture17)   <br> 图神经网络 |图卷积审计网络,GraphSage, GAT||||
 | PART 4  概率图模型|
-| TBD  | (直播-Lecture20)   <br> 概率图模型-1 |贝叶斯推理,LDA模型||||
+| 9月27日 (周日) 10:30AM  | (直播-Lecture18)   <br> 概率图模型-1 |贝叶斯推理,LDA模型||||
 | TBD | (直播-Discussion)   <br> MCMC之Metroplis Hasting算法 |||||
 | TBD | (直播-Discussion)   <br> Bayesian Neural Network |||||
 | TBD | (直播-Paper)   <br>  |||[Dropout as a Bayesian Approximation:Representing Model Uncertainty in Deep Learning](https://arxiv.org/pdf/1506.02142.pdf)||
-| TBD | (直播-Lecture21)   <br> 概率图模型-2 |吉布斯采样、变分法||||
+| TBD | (直播-Lecture18)   <br> 概率图模型-2 |吉布斯采样、变分法||||