diff --git a/README.md b/README.md index 868b030..28305b4 100644 --- a/README.md +++ b/README.md @@ -34,46 +34,46 @@ | TBD | (直播-Discussion) TBD|||||| | TBD | (直播-Discussion) TBD|||||| |PART 2 深度学习与预训练模型| -|TBD | (直播-Lecture10) <br> CRF模型(2),深度学习基础|||[Log-linear models </br>and conditional </br>random fields</br>](http://cseweb.ucsd.edu/~elkan/250B/CRFs.pdf),</br>[An Introduction </br>to Conditional</br> Random Fields</br>](http://homepages.inf.ed.ac.uk/csutton/publications/crftut-fnt.pdf),</br>[Log-Linear Models and Conditional</br> Random Field</br>](http://cseweb.ucsd.edu/~elkan/250Bfall2007/loglinear.pdf),</br>[Generative Learning algorithms</br>](http://cs229.stanford.edu/notes/cs229-notes2.pdf),[网址](http://videolectures.net/cikm08_elkan_llmacrf/)||| +|7月26日 (周日) 10:30AM | (直播-Lecture9) <br> CRF模型(2),深度学习基础|||[Log-linear models </br>and conditional </br>random fields</br>](http://cseweb.ucsd.edu/~elkan/250B/CRFs.pdf),</br>[An Introduction </br>to Conditional</br> Random Fields</br>](http://homepages.inf.ed.ac.uk/csutton/publications/crftut-fnt.pdf),</br>[Log-Linear Models and Conditional</br> Random Field</br>](http://cseweb.ucsd.edu/~elkan/250Bfall2007/loglinear.pdf),</br>[Generative Learning algorithms</br>](http://cs229.stanford.edu/notes/cs229-notes2.pdf),[网址](http://videolectures.net/cikm08_elkan_llmacrf/)||| |TBD | (直播-Paper) <br> ||||| | TBD | (直播-Discussion) <br> GPU的使用与环境搭建 + 基于pytorch的简单的神经网络搭建|||[阅读资料](http://47.94.6.102/NLPCamp6/course-info/blob/master/%E8%AF%BE%E4%BB%B6/0517GPU+pytorch%E9%98%85%E8%AF%BB%E8%B5%84%E6%96%99cuda_c_chinese.pdf)||| | TBD | (直播-Discussion) <br> 对话系统技术概览|||||| -|TBD | (直播-Lecture11) <br> RNN, LSTM,梯度问题 ||||| +|8月2日 (周日) 10:30AM | (直播-Lecture10) <br> RNN, LSTM,梯度问题 ||||| | TBD | (直播-Paper) <br> ||||| | TBD | (直播-Discussion) <br> Pytorch讲解|||||| -| TBD | (直播-Lecture12) <br> Seq2Seq, Attention, Pointer Network |||||| +| 8月9日 (周日) 10:30AM | (直播-Lecture11) <br> Seq2Seq, Attention, Pointer Network |||||| | TBD | (直播-Paper) <br> |||||| | TBD | (直播-Discussion) <br> Introduction to Transfer Learing|||||| | TBD | (直播-Discussion) <br> LSTM的实现(源码讲解) |||||| -| TBD | (直播-Lecture13) <br> Transformer, BERT |||||| +| 8月16日 (周日) 10:30AM | (直播-Lecture12) <br> Transformer, BERT |||||| |TBD | (直播-Paper) <br> |||||| | TBD | (直播-Discussion) <br> 基于Transformer的机器翻译|||||| | TBD | (直播-Discussion) <br> BERT的训练与实战|||||| -| TBD | (直播-Lecture14) <br> GPT, XLNet ||||| +| 8月23日 (周日) 10:30AM | (直播-Lecture13) <br> GPT, XLNet ||||| | TBD | (直播-Discussion) <br> XLNET应用在文本分类和QA系统|||||| | TBD | (直播-Discussion) <br> XLNET源码讲解|||||| | TBD | (直播-Paper) <br> |||||| | PART 3 信息抽取与图挖掘相关| -| TBD | (直播-Lecture15) <br> 信息抽取(1) |利用传统方法论解决命名实体识别,实体统一,实体消歧,关系抽取问题||||| +| 8月30日 (周日) 10:30AM | (直播-Lecture14) <br> 信息抽取(1) |利用传统方法论解决命名实体识别,实体统一,实体消歧,关系抽取问题||||| | TBD | (直播-Paper) <br> |||||| | TBD | (直播-Discussion) <br> 命名实体识别代码实战:BERT-BILSTM-CRF|||||| | TBD | (直播-Discussion) <br> ALBERT |||[ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942)|| | TBD | (直播-Discussion) <br> 项目二讲解|||||| -| TBD | (直播-Lecture16) <br> 信息抽取(2)|利用深度学习解决命名实体识别,实体统一,实体消歧,关系抽取问题|)|||| +| 9月6日 (周日) 10:30AM | (直播-Lecture15) <br> 信息抽取(2)|利用深度学习解决命名实体识别,实体统一,实体消歧,关系抽取问题||||| | TBD | (直播-Paper) <br> |||| | TBD | (直播-Discussion) <br> 依存文法分析(Dependency Parsing) ||||| | TBD | (直播-Discussion) <br> 句法分析(Parsing)和CKY算法 ||||| -| TBD | (直播-Lecture17) <br> 知识图谱 |知识图的概念,搭建,应用场景|||| +| 9月13日 (周日) 10:30AM | (直播-Lecture16) <br> 知识图谱 |知识图的概念,搭建,应用场景|||| | TBD | (直播-Paper) <br> |||||| | TBD | (直播-Discussion) <br> 知识图谱在推荐系统中的应用 ||||| | TBD | (直播-Discussion) <br> project3 项目讲解 ||||| -| TBD | (直播-Lecture18) <br> 图神经网络 |图卷积审计网络,GraphSage, GAT|||| +| 9月20日 (周日) 10:30AM | (直播-Lecture17) <br> 图神经网络 |图卷积审计网络,GraphSage, GAT|||| | PART 4 概率图模型| -| TBD | (直播-Lecture20) <br> 概率图模型-1 |贝叶斯推理,LDA模型|||| +| 9月27日 (周日) 10:30AM | (直播-Lecture18) <br> 概率图模型-1 |贝叶斯推理,LDA模型|||| | TBD | (直播-Discussion) <br> MCMC之Metroplis Hasting算法 ||||| | TBD | (直播-Discussion) <br> Bayesian Neural Network ||||| | TBD | (直播-Paper) <br> |||[Dropout as a Bayesian Approximation:Representing Model Uncertainty in Deep Learning](https://arxiv.org/pdf/1506.02142.pdf)|| -| TBD | (直播-Lecture21) <br> 概率图模型-2 |吉布斯采样、变分法|||| +| TBD | (直播-Lecture18) <br> 概率图模型-2 |吉布斯采样、变分法||||