generate_k_shot_data.py 7.1 KB
Newer Older
20210828028 committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
"""This script samples K examples randomly without replacement from the original data."""

import argparse
import os
import numpy as np
import pandas as pd
from pandas import DataFrame

def get_label(task, line):
    if task in ["MNLI", "MRPC", "QNLI", "QQP", "RTE", "SNLI", "SST-2", "STS-B", "WNLI", "CoLA"]:
        # GLUE style
        line = line.strip().split('\t')
        if task == 'CoLA':
            return line[1]
        elif task == 'MNLI':
            return line[-1]
        elif task == 'MRPC':
            return line[0]
        elif task == 'QNLI':
            return line[-1]
        elif task == 'QQP':
            return line[-1]
        elif task == 'RTE':
            return line[-1]
        elif task == 'SNLI':
            return line[-1]
        elif task == 'SST-2':
            return line[-1]
        elif task == 'STS-B':
            return 0 if float(line[-1]) < 2.5 else 1
        elif task == 'WNLI':
            return line[-1]
        else:
            raise NotImplementedError
    else:
        return line[0]

def load_datasets(data_dir, tasks):
    datasets = {}
    for task in tasks:
        if task in ["MNLI", "MRPC", "QNLI", "QQP", "RTE", "SNLI", "SST-2", "STS-B", "WNLI", "CoLA"]:
            # GLUE style (tsv)
            dataset = {}
            dirname = os.path.join(data_dir, task)
            if task == "MNLI":
                splits = ["train", "dev_matched", "dev_mismatched"]
            else:
                splits = ["train", "dev"]
            for split in splits:
                filename = os.path.join(dirname, f"{split}.tsv")
                with open(filename, "r") as f:
                    lines = f.readlines()
                dataset[split] = lines
            datasets[task] = dataset
        else:
            # Other datasets (csv)
            dataset = {}
            dirname = os.path.join(data_dir, task)
            splits = ["train", "test"]
            for split in splits:
                filename = os.path.join(dirname, f"{split}.csv")
                dataset[split] = pd.read_csv(filename, header=None)
            datasets[task] = dataset
    return datasets

def split_header(task, lines):
    """
    Returns if the task file has a header or not. Only for GLUE tasks.
    """
    if task in ["CoLA"]:
        return [], lines
    elif task in ["MNLI", "MRPC", "QNLI", "QQP", "RTE", "SNLI", "SST-2", "STS-B", "WNLI"]:
        return lines[0:1], lines[1:]
    else:
        raise ValueError("Unknown GLUE task.")

def main():
    parser = argparse.ArgumentParser()
    parser.add_argument("--k", type=int, default=16,
        help="Training examples for each class.")
    parser.add_argument("--task", type=str, nargs="+", 
        default=['SST-2', 'sst-5', 'mr', 'cr', 'mpqa', 'subj', 'trec', 'CoLA', 'MRPC', 'QQP', 'STS-B', 'MNLI', 'SNLI', 'QNLI', 'RTE'],
        help="Task names")
    parser.add_argument("--seed", type=int, nargs="+", 
        default=[100, 13, 21, 42, 87],
        help="Random seeds")

    parser.add_argument("--data_dir", type=str, default="data/original", help="Path to original data")
    parser.add_argument("--output_dir", type=str, default="data", help="Output path")
    parser.add_argument("--mode", type=str, default='k-shot', choices=['k-shot', 'k-shot-10x'], help="k-shot or k-shot-10x (10x dev set)") 

    args = parser.parse_args()
    args.output_dir = os.path.join(args.output_dir, args.mode)

    k = args.k
    print("K =", k)
    datasets = load_datasets(args.data_dir, args.task)

    for seed in args.seed:
        print("Seed = %d" % (seed))
        for task, dataset in datasets.items():
            # Set random seed
            np.random.seed(seed)

            # Shuffle the training set
            print("| Task = %s" % (task))
            if task in ["MNLI", "MRPC", "QNLI", "QQP", "RTE", "SNLI", "SST-2", "STS-B", "WNLI", "CoLA"]:
                # GLUE style 
                train_header, train_lines = split_header(task, dataset["train"])
                np.random.shuffle(train_lines)
            else:
                # Other datasets 
                train_lines = dataset['train'].values.tolist()
                np.random.shuffle(train_lines)

            # Set up dir
            task_dir = os.path.join(args.output_dir, task)
            setting_dir = os.path.join(task_dir, f"{k}-{seed}")
            os.makedirs(setting_dir, exist_ok=True)

            # Write test splits
            if task in ["MNLI", "MRPC", "QNLI", "QQP", "RTE", "SNLI", "SST-2", "STS-B", "WNLI", "CoLA"]:
                # GLUE style
                # Use the original development set as the test set (the original test sets are not publicly available)
                for split, lines in dataset.items():
                    if split.startswith("train"):
                        continue
                    split = split.replace('dev', 'test')
                    with open(os.path.join(setting_dir, f"{split}.tsv"), "w") as f:
                        for line in lines:
                            f.write(line)
            else:
                # Other datasets
                # Use the original test sets
                dataset['test'].to_csv(os.path.join(setting_dir, 'test.csv'), header=False, index=False)  
            
            # Get label list for balanced sampling
            label_list = {}
            for line in train_lines:
                label = get_label(task, line)
                if label not in label_list:
                    label_list[label] = [line]
                else:
                    label_list[label].append(line)
            
            if task in ["MNLI", "MRPC", "QNLI", "QQP", "RTE", "SNLI", "SST-2", "STS-B", "WNLI", "CoLA"]:
                with open(os.path.join(setting_dir, "train.tsv"), "w") as f:
                    for line in train_header:
                        f.write(line)
                    for label in label_list:
                        for line in label_list[label][:k]:
                            f.write(line)
                name = "dev.tsv"
                if task == 'MNLI':
                    name = "dev_matched.tsv"
                with open(os.path.join(setting_dir, name), "w") as f:
                    for line in train_header:
                        f.write(line)
                    for label in label_list:
                        dev_rate = 11 if '10x' in args.mode else 2
                        for line in label_list[label][k:k*dev_rate]:
                            f.write(line)
            else:
                new_train = []
                for label in label_list:
                    for line in label_list[label][:k]:
                        new_train.append(line)
                new_train = DataFrame(new_train)
                new_train.to_csv(os.path.join(setting_dir, 'train.csv'), header=False, index=False)
            
                new_dev = []
                for label in label_list:
                    dev_rate = 11 if '10x' in args.mode else 2
                    for line in label_list[label][k:k*dev_rate]:
                        new_dev.append(line)
                new_dev = DataFrame(new_dev)
                new_dev.to_csv(os.path.join(setting_dir, 'dev.csv'), header=False, index=False)


if __name__ == "__main__":
    main()