models.py 6.77 KB
Newer Older
20210828028 committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
"""Custom models for few-shot learning specific operations."""

import torch
import torch.nn as nn
import transformers
from transformers.modeling_bert import BertPreTrainedModel, BertForSequenceClassification, BertModel, BertOnlyMLMHead
from transformers.modeling_roberta import RobertaForSequenceClassification, RobertaModel, RobertaLMHead, RobertaClassificationHead
from transformers.modeling_outputs import SequenceClassifierOutput

import logging
logger = logging.getLogger(__name__)

def resize_token_type_embeddings(model, new_num_types: int, random_segment: bool):
    """
    Resize the segment (token type) embeddings for BERT
    """
    if hasattr(model, 'bert'):
        old_token_type_embeddings = model.bert.embeddings.token_type_embeddings
    else:
        raise NotImplementedError
    new_token_type_embeddings = nn.Embedding(new_num_types, old_token_type_embeddings.weight.size(1))
    if not random_segment:
        new_token_type_embeddings.weight.data[:old_token_type_embeddings.weight.size(0)] = old_token_type_embeddings.weight.data

    model.config.type_vocab_size = new_num_types
    if hasattr(model, 'bert'):
        model.bert.embeddings.token_type_embeddings = new_token_type_embeddings
    else:
        raise NotImplementedError


class BertForPromptFinetuning(BertPreTrainedModel):

    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels
        self.bert = BertModel(config)
        self.cls = BertOnlyMLMHead(config)
        self.init_weights()

        # These attributes should be assigned once the model is initialized
        self.model_args = None
        self.data_args = None
        self.label_word_list = None

        # For regression
        self.lb = None
        self.ub = None

        # For label search.
        self.return_full_softmax = None

    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        mask_pos=None,
        labels=None,
    ):
        batch_size = input_ids.size(0)

        if mask_pos is not None:
            mask_pos = mask_pos.squeeze()

        # Encode everything
        outputs = self.bert(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids
        )

        # Get <mask> token representation
        sequence_output, pooled_output = outputs[:2]
        sequence_mask_output = sequence_output[torch.arange(sequence_output.size(0)), mask_pos]

        # Logits over vocabulary tokens
        prediction_mask_scores = self.cls(sequence_mask_output)

        # Exit early and only return mask logits.
        if self.return_full_softmax:
            if labels is not None:
                return torch.zeros(1, out=prediction_mask_scores.new()), prediction_mask_scores
            return prediction_mask_scores

        # Return logits for each label
        logits = []
        for label_id in range(len(self.label_word_list)):
            logits.append(prediction_mask_scores[:, self.label_word_list[label_id]].unsqueeze(-1))
        logits = torch.cat(logits, -1)

        # Regression task
        if self.config.num_labels == 1:
            logsoftmax = nn.LogSoftmax(-1)
            logits = logsoftmax(logits) # Log prob of right polarity

        loss = None
        if labels is not None:
            if self.num_labels == 1:
                # Regression task
                loss_fct = nn.KLDivLoss(log_target=True)
                labels = torch.stack([1 - (labels.view(-1) - self.lb) / (self.ub - self.lb), (labels.view(-1) - self.lb) / (self.ub - self.lb)], -1)
                loss = loss_fct(logits.view(-1, 2), labels)
            else:
                loss_fct = nn.CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, logits.size(-1)), labels.view(-1))

        output = (logits,)
        if self.num_labels == 1:
            # Regression output
            output = (torch.exp(logits[..., 1].unsqueeze(-1)) * (self.ub - self.lb) + self.lb,)
        return ((loss,) + output) if loss is not None else output



class RobertaForPromptFinetuning(BertPreTrainedModel):

    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels
        self.roberta = RobertaModel(config)
        self.classifier = RobertaClassificationHead(config)
        self.lm_head = RobertaLMHead(config)
        self.init_weights()

        # These attributes should be assigned once the model is initialized
        self.model_args = None
        self.data_args = None
        self.label_word_list = None

        # For regression
        self.lb = None
        self.ub = None

        # For auto label search.
        self.return_full_softmax = None

    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        mask_pos=None,
        labels=None,
    ):
        batch_size = input_ids.size(0)

        if mask_pos is not None:
            mask_pos = mask_pos.squeeze()

        # Encode everything
        outputs = self.roberta(
            input_ids,
            attention_mask=attention_mask
        )

        # Get <mask> token representation
        sequence_output, pooled_output = outputs[:2]
        sequence_mask_output = sequence_output[torch.arange(sequence_output.size(0)), mask_pos]

        # Logits over vocabulary tokens
        prediction_mask_scores = self.lm_head(sequence_mask_output)

        # Exit early and only return mask logits.
        if self.return_full_softmax:
            if labels is not None:
                return torch.zeros(1, out=prediction_mask_scores.new()), prediction_mask_scores
            return prediction_mask_scores

        # Return logits for each label
        logits = []
        for label_id in range(len(self.label_word_list)):
            logits.append(prediction_mask_scores[:, self.label_word_list[label_id]].unsqueeze(-1))
        logits = torch.cat(logits, -1)

        # Regression task
        if self.config.num_labels == 1:
            logsoftmax = nn.LogSoftmax(-1)
            logits = logsoftmax(logits) # Log prob of right polarity

        loss = None
        if labels is not None:
            if self.num_labels == 1:
                # Regression task
                loss_fct = nn.KLDivLoss(log_target=True)
                labels = torch.stack([1 - (labels.view(-1) - self.lb) / (self.ub - self.lb), (labels.view(-1) - self.lb) / (self.ub - self.lb)], -1)
                loss = loss_fct(logits.view(-1, 2), labels)
            else:
                loss_fct = nn.CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, logits.size(-1)), labels.view(-1))

        output = (logits,)
        if self.num_labels == 1:
            # Regression output
            output = (torch.exp(logits[..., 1].unsqueeze(-1)) * (self.ub - self.lb) + self.lb,)
        return ((loss,) + output) if loss is not None else output