dataset.py 28.8 KB
Newer Older
20210828028 committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
"""Dataset utils for different data settings for GLUE."""

import os
import copy
import logging
import torch
import numpy as np
import time
from filelock import FileLock
import json
import itertools
import random
import transformers
from src.processors import processors_mapping, num_labels_mapping, output_modes_mapping, compute_metrics_mapping, median_mapping
from transformers.data.processors.utils import InputFeatures
from transformers import DataProcessor, InputExample
import dataclasses
from dataclasses import dataclass
from typing import List, Optional, Union
from sentence_transformers import SentenceTransformer, util
from copy import deepcopy
import pandas as pd

logger = logging.getLogger(__name__)

@dataclass(frozen=True)
class OurInputFeatures(InputFeatures):
    """
    Inherit from Transformers' InputFeatuers.
    """

    input_ids: List[int]
    attention_mask: Optional[List[int]] = None
    token_type_ids: Optional[List[int]] = None
    label: Optional[Union[int, float]] = None
    mask_pos: Optional[List[int]] = None # Position of the mask token
    label_word_list: Optional[List[int]] = None # Label word mapping (dynamic)

    def to_json_string(self):
        """Serializes this instance to a JSON string."""
        return json.dumps(dataclasses.asdict(self)) + "\n"

def input_example_to_string(example, sep_token): 
    if example.text_b is None:
        return example.text_a
    else:
        # Warning: very simple hack here
        return example.text_a + ' ' + sep_token + ' ' + example.text_b

def input_example_to_tuple(example): 
    if example.text_b is None:
        if pd.isna(example.text_a) or example.text_a is None:
            return ['']
            logger.warn("Empty input")
        else:
            return [example.text_a]
    else:
        return [example.text_a, example.text_b]

def tokenize_multipart_input(
    input_text_list, 
    max_length, 
    tokenizer, 
    task_name=None, 
    prompt=False, 
    template=None,
    label_word_list=None, 
    first_sent_limit=None,
    other_sent_limit=None,
    gpt3=False,
    truncate_head=False,
    support_labels=None,
):
    def enc(text):
        return tokenizer.encode(text, add_special_tokens=False)

    input_ids = []
    attention_mask = []
    token_type_ids = [] # Only for BERT
    mask_pos = None # Position of the mask token

    if prompt:
        """
        Concatenate all sentences and prompts based on the provided template.
        Template example: '*cls*It was*mask*.*sent_0**<sep>*label_0:*sent_1**<sep>**label_1*:*sent_2**<sep>*'
        *xx* represent variables:
            *cls*: cls_token
            *mask*: mask_token
            *sep*: sep_token
            *sep+*: sep_token, also means +1 for segment id
            *sent_i*: sentence i (input_text_list[i])
            *sent-_i*: same as above, but delete the last token
            *sentl_i*: same as above, but use lower case for the first word
            *sentl-_i*: same as above, but use lower case for the first word and delete the last token
            *+sent_i*: same as above, but add a space before the sentence
            *+sentl_i*: same as above, but add a space before the sentence and use lower case for the first word
            *label_i*: label_word_list[i]
            *label_x*: label depends on the example id (support_labels needed). this is only used in GPT-3's in-context learning

        Use "_" to replace space.
        PAY ATTENTION TO SPACE!! DO NOT leave space before variables, for this will lead to extra space token.
        """
        assert template is not None

        special_token_mapping = {
            'cls': tokenizer.cls_token_id, 'mask': tokenizer.mask_token_id, 'sep': tokenizer.sep_token_id, 'sep+': tokenizer.sep_token_id, 
        }
        template_list = template.split('*') # Get variable list in the template
        segment_id = 0 # Current segment id. Segment id +1 if encountering sep+.

        for part_id, part in enumerate(template_list):
            new_tokens = []
            segment_plus_1_flag = False
            if part in special_token_mapping:
                if part == 'cls' and 'T5' in type(tokenizer).__name__:
                    # T5 does not have cls token
                    continue
                new_tokens.append(special_token_mapping[part])
                if part == 'sep+':
                    segment_plus_1_flag = True
            elif part[:6] == 'label_':
                # Note that label_word_list already has extra space, so do not add more space ahead of it.
                label_id = int(part.split('_')[1])
                label_word = label_word_list[label_id]
                new_tokens.append(label_word)
            elif part[:7] == 'labelx_':
                instance_id = int(part.split('_')[1])
                label_id = support_labels[instance_id]
                label_word = label_word_list[label_id]
                new_tokens.append(label_word)
            elif part[:5] == 'sent_':
                sent_id = int(part.split('_')[1])
                new_tokens += enc(input_text_list[sent_id]) 
            elif part[:6] == '+sent_':
                # Add space
                sent_id = int(part.split('_')[1])
                new_tokens += enc(' ' + input_text_list[sent_id])
            elif part[:6] == 'sent-_':
                # Delete the last token
                sent_id = int(part.split('_')[1])
                new_tokens += enc(input_text_list[sent_id][:-1])
            elif part[:6] == 'sentl_':
                # Lower case the first token
                sent_id = int(part.split('_')[1])
                text = input_text_list[sent_id]
                text = text[:1].lower() + text[1:]
                new_tokens += enc(text)
            elif part[:7] == '+sentl_':
                # Lower case the first token and add space 
                sent_id = int(part.split('_')[1])
                text = input_text_list[sent_id]
                text = text[:1].lower() + text[1:]
                new_tokens += enc(' ' + text)
            elif part[:7] == 'sentl-_':
                # Lower case the first token and discard the last token
                sent_id = int(part.split('_')[1])
                text = input_text_list[sent_id]
                text = text[:1].lower() + text[1:]
                new_tokens += enc(text[:-1])
            elif part[:6] == 'sentu_':
                # Upper case the first token
                sent_id = int(part.split('_')[1])
                text = input_text_list[sent_id]
                text = text[:1].upper() + text[1:]
                new_tokens += enc(text)
            elif part[:7] == '+sentu_':
                # Upper case the first token and add space
                sent_id = int(part.split('_')[1])
                text = input_text_list[sent_id]
                text = text[:1].upper() + text[1:]
                new_tokens += enc(' ' + text)
            else:
                # Just natural language prompt
                part = part.replace('_', ' ') 
                # handle special case when T5 tokenizer might add an extra space
                if len(part) == 1:
                    new_tokens.append(tokenizer._convert_token_to_id(part))
                else:
                    new_tokens += enc(part)

            if part[:4] == 'sent' or part[1:5] == 'sent':
                # If this part is the sentence, limit the sentence length
                sent_id = int(part.split('_')[1])
                if sent_id == 0:
                    if first_sent_limit is not None:
                        new_tokens = new_tokens[:first_sent_limit]
                else:
                    if other_sent_limit is not None:
                        new_tokens = new_tokens[:other_sent_limit]

            input_ids += new_tokens
            attention_mask += [1 for i in range(len(new_tokens))]
            token_type_ids += [segment_id for i in range(len(new_tokens))]

            if segment_plus_1_flag:
                segment_id += 1
    else:
        input_ids = [tokenizer.cls_token_id]
        attention_mask = [1]
        token_type_ids = [0]

        for sent_id, input_text in enumerate(input_text_list):
            if input_text is None:
                # Do not have text_b
                continue
            if pd.isna(input_text) or input_text is None:
                # Empty input
                input_text = ''
            input_tokens = enc(input_text) + [tokenizer.sep_token_id]
            input_ids += input_tokens
            attention_mask += [1 for i in range(len(input_tokens))]
            token_type_ids += [sent_id for i in range(len(input_tokens))]

        if 'T5' in type(tokenizer).__name__: # T5 does not have CLS token
            input_ids = input_ids[1:]
            attention_mask = attention_mask[1:]
            token_type_ids = token_type_ids[1:]

    # Padding
    if first_sent_limit is not None and len(input_ids) > max_length:
        # If using sentence limit, the total length still exceeds the maximum limit, report a warning
        logger.warn("Input exceeds max_length limit: {}".format(tokenizer.decode(input_ids)))

    while len(input_ids) < max_length:
        input_ids.append(tokenizer.pad_token_id)
        attention_mask.append(0)
        token_type_ids.append(0)

    # Truncate
    if len(input_ids) > max_length:
        if truncate_head:
            input_ids = input_ids[-max_length:]
            attention_mask = attention_mask[-max_length:]
            token_type_ids = token_type_ids[-max_length:]
        else:
            # Default is to truncate the tail
            input_ids = input_ids[:max_length]
            attention_mask = attention_mask[:max_length]
            token_type_ids = token_type_ids[:max_length]

    # Find mask token
    if prompt:
        mask_pos = [input_ids.index(tokenizer.mask_token_id)]
        # Make sure that the masked position is inside the max_length
        assert mask_pos[0] < max_length

    result = {'input_ids': input_ids, 'attention_mask': attention_mask}
    if 'BERT' in type(tokenizer).__name__:
        # Only provide token type ids for BERT
        result['token_type_ids'] = token_type_ids

    if prompt:
        result['mask_pos'] = mask_pos

    return result



class FewShotDataset(torch.utils.data.Dataset):
    """Few-shot dataset."""

    def __init__(self, args, tokenizer, cache_dir=None, mode="train", use_demo=False):
        self.args = args
        self.task_name = args.task_name
        self.processor = processors_mapping[args.task_name]
        self.tokenizer = tokenizer
        self.mode = mode

        # If not using demonstrations, use use_demo=True
        self.use_demo = use_demo
        if self.use_demo:
            logger.info("Use demonstrations")
        assert mode in ["train", "dev", "test"]

        # Get label list and (for prompt) label word list
        self.label_list = self.processor.get_labels()
        self.num_labels = len(self.label_list)
        if args.prompt:
            assert args.mapping is not None
            self.label_to_word = eval(args.mapping)

            for key in self.label_to_word:
                # For RoBERTa/BART/T5, tokenization also considers space, so we use space+word as label words.
                if self.label_to_word[key][0] not in ['<', '[', '.', ',']:
                    # Make sure space+word is in the vocabulary
                    assert len(tokenizer.tokenize(' ' + self.label_to_word[key])) == 1
                    self.label_to_word[key] = tokenizer._convert_token_to_id(tokenizer.tokenize(' ' + self.label_to_word[key])[0])
                else:
                    self.label_to_word[key] = tokenizer._convert_token_to_id(self.label_to_word[key])
                logger.info("Label {} to word {} ({})".format(key, tokenizer._convert_id_to_token(self.label_to_word[key]), self.label_to_word[key]))
            
            if len(self.label_list) > 1:
                self.label_word_list = [self.label_to_word[label] for label in self.label_list]
            else:
                # Regression task
                # '0' represents low polarity and '1' represents high polarity.
                self.label_word_list = [self.label_to_word[label] for label in ['0', '1']]
        else:
            self.label_to_word = None
            self.label_word_list = None

        # Multiple sampling: when using demonstrations, we sample different combinations of demonstrations during 
        # inference and aggregate the results by averaging the logits. The number of different samples is num_sample.
        if (mode == "train") or not self.use_demo:
            # We do not do multiple sampling when not using demonstrations or when it's the training mode 
            self.num_sample = 1
        else:
            self.num_sample = args.num_sample

        # If we use multiple templates, we also need to do multiple sampling during inference.
        if args.prompt and args.template_list is not None:
            logger.info("There are %d templates. Multiply num_sample by %d" % (len(args.template_list), len(args.template_list)))
            self.num_sample *= len(args.template_list)
                
        logger.info("Total num_sample for mode %s: %d" % (mode, self.num_sample))

        # Load cache
        # Cache name distinguishes mode, task name, tokenizer, and length. So if you change anything beyond these elements, make sure to clear your cache.
        cached_features_file = os.path.join(
            cache_dir if cache_dir is not None else args.data_dir,
            "cached_{}_{}_{}_{}".format(
                mode,
                tokenizer.__class__.__name__,
                str(args.max_seq_length),
                args.task_name,
            ),
        )

        logger.info(f"Creating/loading examples from dataset file at {args.data_dir}")

        lock_path = cached_features_file + ".lock"
        with FileLock(lock_path):

            if os.path.exists(cached_features_file) and not args.overwrite_cache:
                start = time.time()
                self.support_examples, self.query_examples = torch.load(cached_features_file)
                logger.info(
                    f"Loading features from cached file {cached_features_file} [took %.3f s]", time.time() - start
                )
            else:
                logger.info(f"Creating features from dataset file at {args.data_dir}")

                # The support examples are sourced from the training set.
                self.support_examples = self.processor.get_train_examples(args.data_dir)

                if mode == "dev":
                    self.query_examples = self.processor.get_dev_examples(args.data_dir)
                elif mode == "test":
                    self.query_examples = self.processor.get_test_examples(args.data_dir)
                else:
                    self.query_examples = self.support_examples

                start = time.time()
                torch.save([self.support_examples, self.query_examples], cached_features_file)
                # ^ This seems to take a lot of time so I want to investigate why and how we can improve.
                logger.info(
                    "Saving features into cached file %s [took %.3f s]", cached_features_file, time.time() - start
                )

        # For filtering in using demonstrations, load pre-calculated embeddings
        if self.use_demo and args.demo_filter:
            split_name = ''
            if mode == 'train':
                split_name = 'train'
            elif mode == 'dev':
                if args.task_name == 'mnli':
                    split_name = 'dev_matched'
                elif args.task_name == 'mnli-mm':
                    split_name = 'dev_mismatched'
                else:
                    split_name = 'dev'
            elif mode == 'test':
                if args.task_name == 'mnli':
                    split_name = 'test_matched'
                elif args.task_name == 'mnli-mm':
                    split_name = 'test_mismatched'
                else:
                    split_name = 'test'
            else:
                raise NotImplementedError

            self.support_emb = np.load(os.path.join(args.data_dir, "train_{}.npy".format(args.demo_filter_model)))
            self.query_emb = np.load(os.path.join(args.data_dir, "{}_{}.npy".format(split_name, args.demo_filter_model)))
            logger.info("Load embeddings (for demonstration filtering) from {}".format(os.path.join(args.data_dir, "{}_{}.npy".format(split_name, args.demo_filter_model))))

            assert len(self.support_emb) == len(self.support_examples)
            assert len(self.query_emb) == len(self.query_examples)
 
        # Size is expanded by num_sample
        self.size = len(self.query_examples) * self.num_sample
        
        # Prepare examples (especially for using demonstrations)
        support_indices = list(range(len(self.support_examples)))
        self.example_idx = []
        for sample_idx in range(self.num_sample):
            for query_idx in range(len(self.query_examples)):
                # If training, exclude the current example. Else keep all.
                if self.use_demo and args.demo_filter:
                    # Demonstration filtering
                    candidate = [support_idx for support_idx in support_indices
                                   if support_idx != query_idx or mode != "train"]
                    sim_score = []
                    for support_idx in candidate:
                        sim_score.append((support_idx, util.pytorch_cos_sim(self.support_emb[support_idx], self.query_emb[query_idx])))
                    sim_score.sort(key=lambda x: x[1], reverse=True)
                    if self.num_labels == 1:
                        # Regression task
                        limit_each_label = int(len(sim_score) // 2 * args.demo_filter_rate)
                        count_each_label = {'0': 0, '1': 0}
                        context_indices = []

                        if args.debug_mode:
                            print("Query %s: %s" % (self.query_examples[query_idx].label, self.query_examples[query_idx].text_a)) # debug
                        for support_idx, score in sim_score:
                            if count_each_label['0' if float(self.support_examples[support_idx].label) <= median_mapping[args.task_name] else '1'] < limit_each_label:
                                count_each_label['0' if float(self.support_examples[support_idx].label) <= median_mapping[args.task_name] else '1'] += 1
                                context_indices.append(support_idx)
                                if args.debug_mode:
                                    print("    %.4f %s | %s" % (score, self.support_examples[support_idx].label, self.support_examples[support_idx].text_a)) # debug
                    else:
                        limit_each_label = int(len(sim_score) // self.num_labels * args.demo_filter_rate)
                        count_each_label = {label: 0 for label in self.label_list}
                        context_indices = []

                        if args.debug_mode:
                            print("Query %s: %s" % (self.query_examples[query_idx].label, self.query_examples[query_idx].text_a)) # debug
                        for support_idx, score in sim_score:
                            if count_each_label[self.support_examples[support_idx].label] < limit_each_label:
                                count_each_label[self.support_examples[support_idx].label] += 1
                                context_indices.append(support_idx)
                                if args.debug_mode:
                                    print("    %.4f %s | %s" % (score, self.support_examples[support_idx].label, self.support_examples[support_idx].text_a)) # debug
                else:
                    # Using demonstrations without filtering
                    context_indices = [support_idx for support_idx in support_indices
                               if support_idx != query_idx or mode != "train"]

                # We'll subsample context_indices further later.
                self.example_idx.append((query_idx, context_indices, sample_idx))

        # If it is not training, we pre-process the data; otherwise, we process the data online.
        if mode != "train":
            self.features = []
            _ = 0
            for query_idx, context_indices, bootstrap_idx in self.example_idx:
                # The input (query) example
                example = self.query_examples[query_idx]
                # The demonstrations
                supports = self.select_context([self.support_examples[i] for i in context_indices])

                if args.template_list is not None:
                    template = args.template_list[sample_idx % len(args.template_list)] # Use template in order
                else:
                    template = args.template

                self.features.append(self.convert_fn(
                    example=example,
                    supports=supports,
                    use_demo=self.use_demo,
                    label_list=self.label_list,
                    prompt=args.prompt,
                    template=template,
                    label_word_list=self.label_word_list,
                    verbose=True if _ == 0 else False,
                ))

                _ += 1
        else:
            self.features = None

    def select_context(self, context_examples):
        """
        Select demonstrations from provided examples.
        """
        max_demo_per_label = 1
        counts = {k: 0 for k in self.label_list}
        if len(self.label_list) == 1:
            # Regression
            counts = {'0': 0, '1': 0}
        selection = []

        if self.args.gpt3_in_context_head or self.args.gpt3_in_context_tail:
            # For GPT-3's in-context learning, we sample gpt3_in_context_num demonstrations randomly. 
            order = np.random.permutation(len(context_examples))
            for i in range(min(self.args.gpt3_in_context_num, len(order))):
                selection.append(context_examples[order[i]])
        else:
            # Our sampling strategy
            order = np.random.permutation(len(context_examples))

            for i in order:
                label = context_examples[i].label
                if len(self.label_list) == 1:
                    # Regression
                    label = '0' if float(label) <= median_mapping[self.args.task_name] else '1'
                if counts[label] < max_demo_per_label:
                    selection.append(context_examples[i])
                    counts[label] += 1
                if sum(counts.values()) == len(counts) * max_demo_per_label:
                    break
        
            assert len(selection) > 0
        
        return selection

    def __len__(self):
        return self.size

    def __getitem__(self, i):
        if self.features is None:
            query_idx, context_indices, bootstrap_idx = self.example_idx[i]
            # The input (query) example
            example = self.query_examples[query_idx]
            # The demonstrations
            supports = self.select_context([self.support_examples[i] for i in context_indices])

            if self.args.template_list is not None:
                template = self.args.template_list[sample_idx % len(self.args.template_list)]
            else:
                template = self.args.template

            features = self.convert_fn(
                example=example,
                supports=supports,
                use_demo=self.use_demo,
                label_list=self.label_list,
                prompt=self.args.prompt,
                template=template,
                label_word_list=self.label_word_list,
                verbose=False,
            )
        else:
            features = self.features[i]
            
        return features

    def get_labels(self):
        return self.label_list


    def convert_fn(
        self,
        example,
        supports,
        use_demo=False,
        label_list=None,
        prompt=False,
        template=None,
        label_word_list=None,
        verbose=False
    ):
        """
        Returns a list of processed "InputFeatures".
        """
        max_length = self.args.max_seq_length    

        # Prepare labels
        label_map = {label: i for i, label in enumerate(label_list)} # Mapping the label names to label ids
        if len(label_list) == 1:
            # Regression
            label_map = {'0': 0, '1': 1}

        # Get example's label id (for training/inference)
        if example.label is None:
            example_label = None
        elif len(label_list) == 1:
            # Regerssion
            example_label = float(example.label)
        else:
            example_label = label_map[example.label]

        # Prepare other features
        if not use_demo:
            # No using demonstrations
            inputs = tokenize_multipart_input(
                input_text_list=input_example_to_tuple(example),
                max_length=max_length,
                tokenizer=self.tokenizer,
                task_name=self.args.task_name,
                prompt=prompt,
                template=template,
                label_word_list=label_word_list,
                first_sent_limit=self.args.first_sent_limit,
                other_sent_limit=self.args.other_sent_limit,
            )
            features = OurInputFeatures(**inputs, label=example_label)

        else:
            # Using demonstrations

            # Max length
            if self.args.double_demo:
                # When using demonstrations, double the maximum length
                # Note that in this case, args.max_seq_length is the maximum length for a single sentence
                max_length = max_length * 2
            if self.args.gpt3_in_context_head or self.args.gpt3_in_context_tail:
                # When using GPT-3's in-context learning, take the maximum tokenization length of the model (512)
                max_length = 512

            # All input sentences, including the query and the demonstrations, are put into augmented_examples, 
            # and are numbered based on the order (starting from 0). For single sentence tasks, the input (query)
            # is the sentence 0; for sentence-pair tasks, the input (query) is the sentence 0 and 1. Note that for GPT-3's 
            # in-context learning, the input (query) might be at the end instead of the beginning (gpt3_in_context_head)
            augmented_example = []
            query_text = input_example_to_tuple(example) # Input sentence list for query
            support_by_label = [[] for i in range(len(label_map))]

            if self.args.gpt3_in_context_head or self.args.gpt3_in_context_tail:
                support_labels = []
                augmented_example = query_text
                for support_example in supports:
                    augmented_example += input_example_to_tuple(support_example)
                    current_label = support_example.label
                    if len(label_list) == 1:
                        current_label = '0' if float(current_label) <= median_mapping[self.args.task_name] else '1' # Regression
                    support_labels.append(label_map[current_label])
            else:
                # Group support examples by label
                for label_name, label_id in label_map.items():
                    if len(label_list) == 1:
                        # Regression
                        for support_example in filter(lambda s: ('0' if float(s.label) <= median_mapping[self.args.task_name] else '1') == label_name, supports):
                            support_by_label[label_id] += input_example_to_tuple(support_example)
                    else:
                        for support_example in filter(lambda s: s.label == label_name, supports):
                            support_by_label[label_id] += input_example_to_tuple(support_example)

                augmented_example = query_text
                for label_id in range(len(label_map)):
                    augmented_example += support_by_label[label_id]

            # Tokenization (based on the template)
            inputs = tokenize_multipart_input(
                input_text_list=augmented_example,
                max_length=max_length,
                tokenizer=self.tokenizer,
                task_name=self.args.task_name,
                prompt=prompt,
                template=template,
                label_word_list=label_word_list,
                first_sent_limit=self.args.first_sent_limit,
                other_sent_limit=self.args.other_sent_limit,
                truncate_head=self.args.truncate_head,
                gpt3=self.args.gpt3_in_context_head or self.args.gpt3_in_context_tail,
                support_labels=None if not (self.args.gpt3_in_context_head or self.args.gpt3_in_context_tail) else support_labels
            )
            features = OurInputFeatures(**inputs, label=example_label)

        if verbose:
            logger.info("*** Example ***")
            logger.info("guid: %s" % (example.guid))
            logger.info("features: %s" % features)
            logger.info("text: %s" % self.tokenizer.decode(features.input_ids))

        return features