data_dir=$1 conf_path=$2 ckpt_dir=$3 predict_data=$4 learning_rate=$5 is_train=$6 max_seq_len=$7 batch_size=$8 epoch=${9} pred_save_path=${10} if [ "$is_train" = True ]; then unset CUDA_VISIBLE_DEVICES python -m paddle.distributed.launch --gpus "0" sequence_labeling.py \ --num_epoch ${epoch} \ --learning_rate ${learning_rate} \ --tag_path ${conf_path} \ --train_data ${data_dir}/train.tsv \ --dev_data ${data_dir}/dev.tsv \ --test_data ${data_dir}/test.tsv \ --predict_data ${predict_data} \ --do_train True \ --do_predict False \ --max_seq_len ${max_seq_len} \ --batch_size ${batch_size} \ --skip_step 10 \ --valid_step 50 \ --checkpoints ${ckpt_dir} \ --init_ckpt ${ckpt_dir}/best.pdparams \ --predict_save_path ${pred_save_path} \ --device gpu else export CUDA_VISIBLE_DEVICES=0 python sequence_labeling.py \ --num_epoch ${epoch} \ --learning_rate ${learning_rate} \ --tag_path ${conf_path} \ --train_data ${data_dir}/train.tsv \ --dev_data ${data_dir}/dev.tsv \ --test_data ${data_dir}/test.tsv \ --predict_data ${predict_data} \ --do_train False \ --do_predict True \ --max_seq_len ${max_seq_len} \ --batch_size ${batch_size} \ --skip_step 10 \ --valid_step 50 \ --checkpoints ${ckpt_dir} \ --init_ckpt ${ckpt_dir}/best.pdparams \ --predict_save_path ${pred_save_path} \ --device gpu fi