modeling.py 65.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
# Copyright (c) 2019, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch BERT model."""

from __future__ import absolute_import, division, print_function, unicode_literals

import os
import copy
import json
import math
import logging
import tarfile
import tempfile
import shutil

import torch
from torch import nn
import torch.nn.functional as F
from torch.nn import CrossEntropyLoss

#from torch.utils.checkpoint import checkpoint

from data_utils.file_utils import cached_path

import mpu


def normal_init_method(mean, std):
    def init_(tensor):
        return torch.nn.init.normal_(tensor, mean=mean, std=std)
    return init_

def scaled_init_method(mean, std, num_layers):
    """Init method based on N(0, sigma/sqrt(2*num_layers)."""
    std = std / math.sqrt(2.0 * num_layers)
    def init_(tensor):
        return torch.nn.init.normal_(tensor, mean=mean, std=std)

    return init_

logger = logging.getLogger(__name__)

PRETRAINED_MODEL_ARCHIVE_MAP = {
    'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased.tar.gz",
    'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased.tar.gz",
    'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased.tar.gz",
    'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased.tar.gz",
    'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased.tar.gz",
    'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased.tar.gz",
    'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese.tar.gz",
}
CONFIG_NAME = 'bert_config.json'
WEIGHTS_NAME = 'pytorch_model.bin'
TF_WEIGHTS_NAME = 'model.ckpt'

def load_tf_weights_in_bert(model, tf_checkpoint_path):
    """ Load tf checkpoints in a pytorch model
    """
    try:
        import re
        import numpy as np
        import tensorflow as tf
    except ImportError:
        print("Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see "
            "https://www.tensorflow.org/install/ for installation instructions.")
        raise
    tf_path = os.path.abspath(tf_checkpoint_path)
    print("Converting TensorFlow checkpoint from {}".format(tf_path))
    # Load weights from TF model
    init_vars = tf.train.list_variables(tf_path)
    names = []
    arrays = []
    for name, shape in init_vars:
        print("Loading TF weight {} with shape {}".format(name, shape))
        array = tf.train.load_variable(tf_path, name)
        names.append(name)
        arrays.append(array)

    for name, array in zip(names, arrays):
        name = name.split('/')
        # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
        # which are not required for using pretrained model
        if any(n in ["adam_v", "adam_m"] for n in name):
            print("Skipping {}".format("/".join(name)))
            continue
        pointer = model
        for m_name in name:
            if re.fullmatch(r'[A-Za-z]+_\d+', m_name):
                l = re.split(r'_(\d+)', m_name)
            else:
                l = [m_name]
            if l[0] == 'kernel' or l[0] == 'gamma':
                pointer = getattr(pointer, 'weight')
            elif l[0] == 'output_bias' or l[0] == 'beta':
                pointer = getattr(pointer, 'bias')
            elif l[0] == 'output_weights':
                pointer = getattr(pointer, 'weight')
            else:
                pointer = getattr(pointer, l[0])
            if len(l) >= 2:
                num = int(l[1])
                pointer = pointer[num]
        if m_name[-11:] == '_embeddings':
            pointer = getattr(pointer, 'weight')
        elif m_name == 'kernel':
            array = np.transpose(array)
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
        print("Initialize PyTorch weight {}".format(name))
        pointer.data = torch.from_numpy(array)
    return model


def gelu(x):
    """Implementation of the gelu activation function.
        For information: OpenAI GPT's gelu is slightly different (and gives slightly different results):
        0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
    """
    return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))


def swish(x):
    return x * torch.sigmoid(x)


ACT2FN = {"gelu": gelu, "relu": torch.nn.functional.relu, "swish": swish}

class BertConfig(object):
    """Configuration class to store the configuration of a `BertModel`.
    """
    def __init__(self,
                 vocab_size_or_config_json_file,
                 hidden_size=768,
                 num_hidden_layers=12,
                 num_attention_heads=12,
                 intermediate_size=3072,
                 hidden_act="gelu",
                 hidden_dropout_prob=0.1,
                 attention_probs_dropout_prob=0.1,
                 max_position_embeddings=512,
                 type_vocab_size=2,
                 initializer_range=0.02,
                 deep_init=False,
                 fp32_layernorm=False,
                 fp32_embedding=False,
                 fp32_tokentypes=False,
                 layernorm_epsilon=1e-12):
        """Constructs BertConfig.

        Args:
            vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `BertModel`.
            hidden_size: Size of the encoder layers and the pooler layer.
            num_hidden_layers: Number of hidden layers in the Transformer encoder.
            num_attention_heads: Number of attention heads for each attention layer in
                the Transformer encoder.
            intermediate_size: The size of the "intermediate" (i.e., feed-forward)
                layer in the Transformer encoder.
            hidden_act: The non-linear activation function (function or string) in the
                encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
            hidden_dropout_prob: The dropout probabilitiy for all fully connected
                layers in the embeddings, encoder, and pooler.
            attention_probs_dropout_prob: The dropout ratio for the attention
                probabilities.
            max_position_embeddings: The maximum sequence length that this model might
                ever be used with. Typically set this to something large just in case
                (e.g., 512 or 1024 or 2048).
            type_vocab_size: The vocabulary size of the `token_type_ids` passed into
                `BertModel`.
            initializer_range: The sttdev of the truncated_normal_initializer for
                initializing all weight matrices.
        """
        if isinstance(vocab_size_or_config_json_file, str):
            with open(vocab_size_or_config_json_file, "r", encoding='utf-8') as reader:
                json_config = json.loads(reader.read())
            for key, value in json_config.items():
                self.__dict__[key] = value
        elif isinstance(vocab_size_or_config_json_file, int):
            self.vocab_size = vocab_size_or_config_json_file
            self.hidden_size = hidden_size
            self.num_hidden_layers = num_hidden_layers
            self.num_attention_heads = num_attention_heads
            self.hidden_act = hidden_act
            self.intermediate_size = intermediate_size
            self.hidden_dropout_prob = hidden_dropout_prob
            self.attention_probs_dropout_prob = attention_probs_dropout_prob
            self.max_position_embeddings = max_position_embeddings
            self.type_vocab_size = type_vocab_size
            self.initializer_range = initializer_range
            self.deep_init = deep_init
            self.fp32_layernorm = fp32_layernorm
            self.fp32_embedding = fp32_embedding
            self.layernorm_epsilon = layernorm_epsilon
            self.fp32_tokentypes = fp32_tokentypes
        else:
            raise ValueError("First argument must be either a vocabulary size (int)"
                             "or the path to a pretrained model config file (str)")

    @classmethod
    def from_dict(cls, json_object):
        """Constructs a `BertConfig` from a Python dictionary of parameters."""
        config = BertConfig(vocab_size_or_config_json_file=-1)
        for key, value in json_object.items():
            config.__dict__[key] = value
        return config

    @classmethod
    def from_json_file(cls, json_file):
        """Constructs a `BertConfig` from a json file of parameters."""
        with open(json_file, "r", encoding='utf-8') as reader:
            text = reader.read()
        return cls.from_dict(json.loads(text))

    def __repr__(self):
        return str(self.to_json_string())

    def to_dict(self):
        """Serializes this instance to a Python dictionary."""
        output = copy.deepcopy(self.__dict__)
        return output

    def to_json_string(self):
        """Serializes this instance to a JSON string."""
        return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"

try:
    from apex.normalization.fused_layer_norm import FusedLayerNorm as BertLayerNorm
except ImportError:
    print("Better speed can be achieved with apex installed from https://www.github.com/nvidia/apex.")
    class BertLayerNorm(nn.Module):
        def __init__(self, hidden_size, eps=1e-12):
            """Construct a layernorm module in the TF style (epsilon inside the square root).
            """
            super(BertLayerNorm, self).__init__()
            self.weight = nn.Parameter(torch.ones(hidden_size))
            self.bias = nn.Parameter(torch.zeros(hidden_size))
            self.variance_epsilon = eps

        def forward(self, x):
            u = x.mean(-1, keepdim=True)
            s = (x - u).pow(2).mean(-1, keepdim=True)
            x = (x - u) / torch.sqrt(s + self.variance_epsilon)
            return self.weight * x + self.bias

class BertEmbeddings(nn.Module):
    """Construct the embeddings from word, position and token_type embeddings.
    """
    def __init__(self, config):
        super(BertEmbeddings, self).__init__()
        #self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size)
        self.word_embeddings = mpu.VocabParallelEmbedding(
            config.vocab_size, config.hidden_size,
            init_method=normal_init_method(mean=0.0,
                                           std=config.initializer_range))
        self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
        self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)

        # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
        # any TensorFlow checkpoint file
        self.fp32_layernorm = config.fp32_layernorm
        self.fp32_embedding = config.fp32_embedding
        self.fp32_tokentypes = config.fp32_tokentypes
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layernorm_epsilon)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, input_ids, token_type_ids=None):
        seq_length = input_ids.size(1)
        position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device)
        position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
        if token_type_ids is None:
            token_type_ids = torch.zeros_like(input_ids)

        words_embeddings = self.word_embeddings(input_ids)
        position_embeddings = self.position_embeddings(position_ids)
        token_type_embeddings = self.token_type_embeddings(token_type_ids)
        if not self.fp32_tokentypes:

            embeddings = words_embeddings + position_embeddings + token_type_embeddings
            if self.fp32_embedding and not self.fp32_layernorm:
                embeddings = embeddings.half()
            previous_type = embeddings.type()
            if self.fp32_layernorm:
                embeddings = embeddings.float()
            embeddings = self.LayerNorm(embeddings)
            if self.fp32_layernorm:
                if self.fp32_embedding:
                    embeddings = embeddings.half()
                else:
                    embeddings = embeddings.type(previous_type)
        else:
            embeddings = words_embeddings.float() + position_embeddings.float() + token_type_embeddings.float()    
            if self.fp32_tokentypes and not self.fp32_layernorm:
                embeddings = embeddings.half()
            previous_type = embeddings.type()
            if self.fp32_layernorm:
                embeddings = embeddings.float()
            embeddings = self.LayerNorm(embeddings)
            if self.fp32_layernorm:
                if self.fp32_tokentypes:
                    embeddings = embeddings.half()
                else:
                    embeddings = embeddings.type(previous_type)
        embeddings = self.dropout(embeddings)
        return embeddings


class BertSelfAttention(nn.Module):
    def __init__(self, config):
        super(BertSelfAttention, self).__init__()
        if config.hidden_size % config.num_attention_heads != 0:
            raise ValueError(
                "The hidden size (%d) is not a multiple of the number of attention "
                "heads (%d)" % (config.hidden_size, config.num_attention_heads))
        self.num_attention_heads = config.num_attention_heads
        self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
        self.all_head_size = self.num_attention_heads * self.attention_head_size

        self.query = nn.Linear(config.hidden_size, self.all_head_size)
        self.key = nn.Linear(config.hidden_size, self.all_head_size)
        self.value = nn.Linear(config.hidden_size, self.all_head_size)

        self.dropout = nn.Dropout(config.attention_probs_dropout_prob)

    def transpose_for_scores(self, x):
        new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
        x = x.view(*new_x_shape)
        return x.permute(0, 2, 1, 3)

    def forward(self, hidden_states, attention_mask):

        mixed_query_layer = self.query(hidden_states)
        mixed_key_layer = self.key(hidden_states)
        mixed_value_layer = self.value(hidden_states)

        query_layer = self.transpose_for_scores(mixed_query_layer)
        key_layer = self.transpose_for_scores(mixed_key_layer)
        value_layer = self.transpose_for_scores(mixed_value_layer)

        # Take the dot product between "query" and "key" to get the raw attention scores.
        attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
        attention_scores = attention_scores / math.sqrt(self.attention_head_size)
        # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
        attention_scores = attention_scores + attention_mask

        # Normalize the attention scores to probabilities.
        attention_probs = nn.Softmax(dim=-1)(attention_scores)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        attention_probs = self.dropout(attention_probs)
        
        previous_type = attention_probs.type()
        context_layer = torch.matmul(attention_probs, value_layer)
        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
        new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
        context_layer = context_layer.view(*new_context_layer_shape)
        return context_layer


class BertSelfOutput(nn.Module):
    def __init__(self, config):
        super(BertSelfOutput, self).__init__()
        if hasattr(config, 'deep_init') and config.deep_init:
            init_method = scaled_init_method(mean=0.0,
                                             std=config.initializer_range,
                                             num_layers=config.num_hidden_layers)
        else:
            init_method = normal_init_method(mean=0.0,
                                             std=config.initializer_range)
        self.dense = mpu.RowParallelLinear(
            input_size=config.hidden_size,
            output_size=config.hidden_size,
            bias=True,
            input_is_parallel=True,
            stride=1,
            init_method=init_method)
        self.fp32_layernorm = config.fp32_layernorm
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layernorm_epsilon)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        ln_input = hidden_states + input_tensor
        previous_type = ln_input.type()
        if self.fp32_layernorm:
            ln_input = ln_input.float()
        hidden_states = self.LayerNorm(ln_input)
        if self.fp32_layernorm:
            hidden_states = hidden_states.type(previous_type)
        return hidden_states


class BertAttention(nn.Module):
    def __init__(self, config):
        super(BertAttention, self).__init__()
        self.self = mpu.BertParallelSelfAttention(
            hidden_size=config.hidden_size,
            num_attention_heads=config.num_attention_heads,
            dropout_prob=config.attention_probs_dropout_prob,
            output_parallel=True,
            init_method=normal_init_method(mean=0.0,
                                           std=config.initializer_range))
        self.output = BertSelfOutput(config)

    def forward(self, input_tensor, attention_mask):
        self_output = self.self(input_tensor, attention_mask)
        attention_output = self.output(self_output, input_tensor)
        return attention_output


class BertIntermediate(nn.Module):
    def __init__(self, config):
        super(BertIntermediate, self).__init__()
        self.dense = mpu.ColumnParallelLinear(
            input_size=config.hidden_size,
            output_size=config.intermediate_size,
            bias=True,
            gather_output=False,
            stride=1,
            init_method=normal_init_method(mean=0.0,
                                           std=config.initializer_range))
        self.intermediate_act_fn = ACT2FN[config.hidden_act] \
            if isinstance(config.hidden_act, str) else config.hidden_act

    def forward(self, hidden_states):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.intermediate_act_fn(hidden_states)
        return hidden_states


class BertOutput(nn.Module):
    def __init__(self, config):
        super(BertOutput, self).__init__()
        if hasattr(config, 'deep_init') and  config.deep_init:
            init_method = scaled_init_method(mean=0.0,
                                             std=config.initializer_range,
                                             num_layers=config.num_hidden_layers)
        else:
            init_method = normal_init_method(mean=0.0,
                                             std=config.initializer_range)
        self.dense = mpu.RowParallelLinear(
            input_size=config.intermediate_size,
            output_size=config.hidden_size,
            bias=True,
            input_is_parallel=True,
            stride=1,
            init_method=init_method)
        self.fp32_layernorm = config.fp32_layernorm
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layernorm_epsilon)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        ln_input = hidden_states + input_tensor
        previous_type = ln_input.type()
        if self.fp32_layernorm:
            ln_input = ln_input.float()
        hidden_states = self.LayerNorm(ln_input)
        if self.fp32_layernorm:
            hidden_states = hidden_states.type(previous_type)
        return hidden_states


class BertLayer(nn.Module):
    def __init__(self, config):
        super(BertLayer, self).__init__()
        self.attention = BertAttention(config)
        self.intermediate = BertIntermediate(config)
        self.output = BertOutput(config)

    def forward(self, hidden_states, attention_mask):
        attention_output = self.attention(hidden_states, attention_mask)
        intermediate_output = self.intermediate(attention_output)
        layer_output = self.output(intermediate_output, attention_output)
        return layer_output


class BertEncoder(nn.Module):
    def __init__(self, config):
        super(BertEncoder, self).__init__()
        #layer = BertLayer(config)
        #self.layer = nn.ModuleList([copy.deepcopy(layer) for _ in range(config.num_hidden_layers)])
        self.layer = nn.ModuleList([BertLayer(config) for _ in range(config.num_hidden_layers)])

    # def forward(self, hidden_states, attention_mask, output_all_encoded_layers=True):
    #     all_encoder_layers = []
    #     for layer_module in self.layer:
    #         hidden_states = layer_module(hidden_states, attention_mask)
    #         if output_all_encoded_layers:
    #             all_encoder_layers.append(hidden_states)
    #     if not output_all_encoded_layers:
    #         all_encoder_layers.append(hidden_states)
    #     return all_encoder_layers
    def forward(self, hidden_states, attention_mask, output_all_encoded_layers=True, checkpoint_activations=False):
        all_encoder_layers = []
        def custom(start, end):
            def custom_forward(*inputs):
                layers = self.layer[start:end]
                x_ = inputs[0]
                for layer in layers:
                    x_ = layer(x_, inputs[1])
                return x_
            return custom_forward

        if checkpoint_activations:
            l = 0
            num_layers = len(self.layer)
            chunk_length = 1 #math.ceil(math.sqrt(num_layers))
            while l < num_layers:
                hidden_states = mpu.checkpoint(custom(l, l+chunk_length), hidden_states, attention_mask*1)
                l += chunk_length
            # decoder layers
        else:
            for i,layer_module in enumerate(self.layer):
                hidden_states = layer_module(hidden_states, attention_mask)

                if output_all_encoded_layers:
                    all_encoder_layers.append(hidden_states)

        if not output_all_encoded_layers or checkpoint_activations:
            all_encoder_layers.append(hidden_states)
        return all_encoder_layers


class BertPooler(nn.Module):
    def __init__(self, config):
        super(BertPooler, self).__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.activation = nn.Tanh()

    def forward(self, hidden_states):
        # We "pool" the model by simply taking the hidden state corresponding
        # to the first token.
        first_token_tensor = hidden_states[:, 0]
        pooled_output = self.dense(first_token_tensor)
        pooled_output = self.activation(pooled_output)
        return pooled_output


class BertPredictionHeadTransform(nn.Module):
    def __init__(self, config):
        super(BertPredictionHeadTransform, self).__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.transform_act_fn = ACT2FN[config.hidden_act] \
            if isinstance(config.hidden_act, str) else config.hidden_act
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layernorm_epsilon)
        self.fp32_layernorm = config.fp32_layernorm

    def forward(self, hidden_states):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.transform_act_fn(hidden_states)
        previous_type = hidden_states.type()
        if self.fp32_layernorm:
            hidden_states = hidden_states.float()
        hidden_states = self.LayerNorm(hidden_states)
        if self.fp32_layernorm:
            hidden_states = hidden_states.type(previous_type)
        return hidden_states


class BertLMPredictionHead(nn.Module):
    def __init__(self, config, bert_model_embedding_weights):
        super(BertLMPredictionHead, self).__init__()
        self.transform = BertPredictionHeadTransform(config)

        # The output weights are the same as the input embeddings, but there is
        # an output-only bias for each token.
        #self.decoder = nn.Linear(bert_model_embedding_weights.size(1),
        #                         bert_model_embedding_weights.size(0),
        #                         bias=False)
        self.decoder_weight = bert_model_embedding_weights
        self.bias = nn.Parameter(torch.zeros(bert_model_embedding_weights.size(0)))
        self.bias.model_parallel = True
        self.fp32_embedding = config.fp32_embedding
        self.fp32_layernorm = config.fp32_layernorm
        def convert_to_type(tensor):
            if self.fp32_embedding:
                return tensor.half()
            else:
                return tensor
        self.type_converter = convert_to_type
        self.converted = False

    def forward(self, hidden_states):
        if not self.converted:
            self.converted = True
            if self.fp32_embedding:
                self.transform.half()
                if self.fp32_layernorm:
                    self.transform.LayerNorm.float()
        hidden_states = self.transform(self.type_converter(hidden_states))
        # hidden_states = self.decoder(hidden_states) + self.bias
        hidden_states = mpu.copy_to_model_parallel_region(hidden_states)
        hidden_states = F.linear(self.type_converter(hidden_states),
                                 self.type_converter(self.decoder_weight),
                                 self.type_converter(self.bias))
        return hidden_states


class BertOnlyMLMHead(nn.Module):
    def __init__(self, config, bert_model_embedding_weights):
        super(BertOnlyMLMHead, self).__init__()
        self.predictions = BertLMPredictionHead(config, bert_model_embedding_weights)

    def forward(self, sequence_output):
        prediction_scores = self.predictions(sequence_output)
        return prediction_scores


class BertOnlyNSPHead(nn.Module):
    def __init__(self, config):
        super(BertOnlyNSPHead, self).__init__()
        self.seq_relationship = nn.Linear(config.hidden_size, 2)

    def forward(self, pooled_output):
        seq_relationship_score = self.seq_relationship(pooled_output)
        return seq_relationship_score


class BertPreTrainingHeads(nn.Module):
    def __init__(self, config, bert_model_embedding_weights):
        super(BertPreTrainingHeads, self).__init__()
        self.predictions = BertLMPredictionHead(config, bert_model_embedding_weights)
        self.seq_relationship = nn.Linear(config.hidden_size, 2)

    def forward(self, sequence_output, pooled_output):
        prediction_scores = self.predictions(sequence_output)
        for p in self.seq_relationship.parameters():
            if p is None:
                continue
            pooled_output = pooled_output.type_as(p)
        seq_relationship_score = self.seq_relationship(pooled_output)
        return prediction_scores, seq_relationship_score


class PreTrainedBertModel(nn.Module):
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
    def __init__(self, config, *inputs, **kwargs):
        super(PreTrainedBertModel, self).__init__()
        if not isinstance(config, BertConfig):
            raise ValueError(
                "Parameter config in `{}(config)` should be an instance of class `BertConfig`. "
                "To create a model from a Google pretrained model use "
                "`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
                    self.__class__.__name__, self.__class__.__name__
                ))
        self.config = config

    def init_bert_weights(self, module):
        """ Initialize the weights.
        """
        if isinstance(module, (nn.Linear, nn.Embedding)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
        elif isinstance(module, BertLayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
        if isinstance(module, nn.Linear) and module.bias is not None:
            module.bias.data.zero_()

    @classmethod
    def from_pretrained(cls, pretrained_model_name, state_dict=None, cache_dir=None,
                        fp32_layernorm=False, fp32_embedding=False, layernorm_epsilon=1e-12,
                        fp32_tokentypes=False, *inputs, **kwargs):
        """
        Instantiate a PreTrainedBertModel from a pre-trained model file or a pytorch state dict.
        Download and cache the pre-trained model file if needed.

        Params:
            pretrained_model_name: either:
                - a str with the name of a pre-trained model to load selected in the list of:
                    . `bert-base-uncased`
                    . `bert-large-uncased`
                    . `bert-base-cased`
                    . `bert-large-cased`
                    . `bert-base-multilingual-uncased`
                    . `bert-base-multilingual-cased`
                    . `bert-base-chinese`
                - a path or url to a pretrained model archive containing:
                    . `bert_config.json` a configuration file for the model
                    . `pytorch_model.bin` a PyTorch dump of a BertForPreTraining instance
            cache_dir: an optional path to a folder in which the pre-trained models will be cached.
            state_dict: an optional state dictionnary (collections.OrderedDict object) to use instead of Google pre-trained models
            *inputs, **kwargs: additional input for the specific Bert class
                (ex: num_labels for BertForSequenceClassification)
        """
        if pretrained_model_name in PRETRAINED_MODEL_ARCHIVE_MAP:
            archive_file = PRETRAINED_MODEL_ARCHIVE_MAP[pretrained_model_name]
        else:
            archive_file = pretrained_model_name
        # redirect to the cache, if necessary
        try:
            resolved_archive_file = cached_path(archive_file, cache_dir=cache_dir)
        except FileNotFoundError:
            logger.error(
                "Model name '{}' was not found in model name list ({}). "
                "We assumed '{}' was a path or url but couldn't find any file "
                "associated to this path or url.".format(
                    pretrained_model_name,
                    ', '.join(PRETRAINED_MODEL_ARCHIVE_MAP.keys()),
                    archive_file))
            return None
        if resolved_archive_file == archive_file:
            logger.info("loading archive file {}".format(archive_file))
        else:
            logger.info("loading archive file {} from cache at {}".format(
                archive_file, resolved_archive_file))
        tempdir = None
        if os.path.isdir(resolved_archive_file):
            serialization_dir = resolved_archive_file
        else:
            # Extract archive to temp dir
            tempdir = tempfile.mkdtemp()
            logger.info("extracting archive file {} to temp dir {}".format(
                resolved_archive_file, tempdir))
            with tarfile.open(resolved_archive_file, 'r:gz') as archive:
                archive.extractall(tempdir)
            serialization_dir = tempdir
        # Load config
        config_file = os.path.join(serialization_dir, CONFIG_NAME)
        config = BertConfig.from_json_file(config_file)
        config.fp32_layernorm = fp32_layernorm
        config.fp32_embedding = fp32_embedding
        config.layernorm_epsilon = layernorm_epsilon
        config.fp32_tokentypes = fp32_tokentypes
        logger.info("Model config {}".format(config))
        # Instantiate model.
        model = cls(config, *inputs, **kwargs)
        if state_dict is None:
            weights_path = os.path.join(serialization_dir, WEIGHTS_NAME)
            state_dict = torch.load(weights_path)

        old_keys = []
        new_keys = []
        for key in state_dict.keys():
            new_key = None
            if 'gamma' in key:
                new_key = key.replace('gamma', 'weight')
            if 'beta' in key:
                new_key = key.replace('beta', 'bias')
            if new_key:
                old_keys.append(key)
                new_keys.append(new_key)
        for old_key, new_key in zip(old_keys, new_keys):
            state_dict[new_key] = state_dict.pop(old_key)

        missing_keys = []
        unexpected_keys = []
        error_msgs = []
        # copy state_dict so _load_from_state_dict can modify it
        metadata = getattr(state_dict, '_metadata', None)
        state_dict = state_dict.copy()
        if metadata is not None:
            state_dict._metadata = metadata

        def load(module, prefix=''):
            local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
            module._load_from_state_dict(
                state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs)
            for name, child in module._modules.items():
                if child is not None:
                    load(child, prefix + name + '.')
        load(model, prefix='' if hasattr(model, 'bert') else 'bert.')
        if len(missing_keys) > 0:
            logger.info("Weights of {} not initialized from pretrained model: {}".format(
                model.__class__.__name__, missing_keys))
        if len(unexpected_keys) > 0:
            logger.info("Weights from pretrained model not used in {}: {}".format(
                model.__class__.__name__, unexpected_keys))
        if tempdir:
            # Clean up temp dir
            shutil.rmtree(tempdir)
        return model


class BertModel(PreTrainedBertModel):
    """BERT model ("Bidirectional Embedding Representations from a Transformer").

    Params:
        config: a BertConfig class instance with the configuration to build a new model

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
            with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
            `extract_features.py`, `run_classifier.py` and `run_squad.py`)
        `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
            types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
            a `sentence B` token (see BERT paper for more details).
        `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
            selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
            input sequence length in the current batch. It's the mask that we typically use for attention when
            a batch has varying length sentences.
        `output_all_encoded_layers`: boolean which controls the content of the `encoded_layers` output as described below. Default: `True`.

    Outputs: Tuple of (encoded_layers, pooled_output)
        `encoded_layers`: controled by `output_all_encoded_layers` argument:
            - `output_all_encoded_layers=True`: outputs a list of the full sequences of encoded-hidden-states at the end
                of each attention block (i.e. 12 full sequences for BERT-base, 24 for BERT-large), each
                encoded-hidden-state is a torch.FloatTensor of size [batch_size, sequence_length, hidden_size],
            - `output_all_encoded_layers=False`: outputs only the full sequence of hidden-states corresponding
                to the last attention block of shape [batch_size, sequence_length, hidden_size],
        `pooled_output`: a torch.FloatTensor of size [batch_size, hidden_size] which is the output of a
            classifier pretrained on top of the hidden state associated to the first character of the
            input (`CLF`) to train on the Next-Sentence task (see BERT's paper).

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

    config = modeling.BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
        num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

    model = modeling.BertModel(config=config)
    all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)
    ```
    """
    def __init__(self, config):
        super(BertModel, self).__init__(config)
        self.embeddings = BertEmbeddings(config)
        self.encoder = BertEncoder(config)
        self.pooler = BertPooler(config)
        self.apply(self.init_bert_weights)

    def forward(self, input_ids, token_type_ids=None, attention_mask=None, output_all_encoded_layers=True, checkpoint_activations=False):
        if attention_mask is None:
            attention_mask = torch.ones_like(input_ids)
        if token_type_ids is None:
            token_type_ids = torch.zeros_like(input_ids)

        # We create a 3D attention mask from a 2D tensor mask.
        # Sizes are [batch_size, 1, 1, to_seq_length]
        # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
        # this attention mask is more simple than the triangular masking of causal attention
        # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
        extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)

        # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
        # masked positions, this operation will create a tensor which is 0.0 for
        # positions we want to attend and -10000.0 for masked positions.
        # Since we are adding it to the raw scores before the softmax, this is
        # effectively the same as removing these entirely.
        extended_attention_mask = extended_attention_mask.to(dtype=next(self.encoder.parameters()).dtype) # fp16 compatibility
        extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0

        embedding_output = self.embeddings(input_ids, token_type_ids)
        encoded_layers = self.encoder(embedding_output,
                                      extended_attention_mask,
                                      output_all_encoded_layers=output_all_encoded_layers,
                                      checkpoint_activations=checkpoint_activations)
        sequence_output = encoded_layers[-1]
        for p in self.pooler.parameters():
            if p is None:
                continue
            sequence_output = sequence_output.type_as(p)
            break
        pooled_output = self.pooler(sequence_output)
        if not output_all_encoded_layers or checkpoint_activations:
            encoded_layers = encoded_layers[-1]
        return encoded_layers, pooled_output


class BertForPreTraining(PreTrainedBertModel):
    """BERT model with pre-training heads.
    This module comprises the BERT model followed by the two pre-training heads:
        - the masked language modeling head, and
        - the next sentence classification head.

    Params:
        config: a BertConfig class instance with the configuration to build a new model.

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
            with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
            `extract_features.py`, `run_classifier.py` and `run_squad.py`)
        `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
            types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
            a `sentence B` token (see BERT paper for more details).
        `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
            selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
            input sequence length in the current batch. It's the mask that we typically use for attention when
            a batch has varying length sentences.
        `masked_lm_labels`: masked language modeling labels: torch.LongTensor of shape [batch_size, sequence_length]
            with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss
            is only computed for the labels set in [0, ..., vocab_size]
        `next_sentence_label`: next sentence classification loss: torch.LongTensor of shape [batch_size]
            with indices selected in [0, 1].
            0 => next sentence is the continuation, 1 => next sentence is a random sentence.

    Outputs:
        if `masked_lm_labels` and `next_sentence_label` are not `None`:
            Outputs the total_loss which is the sum of the masked language modeling loss and the next
            sentence classification loss.
        if `masked_lm_labels` or `next_sentence_label` is `None`:
            Outputs a tuple comprising
            - the masked language modeling logits of shape [batch_size, sequence_length, vocab_size], and
            - the next sentence classification logits of shape [batch_size, 2].

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

    config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
        num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

    model = BertForPreTraining(config)
    masked_lm_logits_scores, seq_relationship_logits = model(input_ids, token_type_ids, input_mask)
    ```
    """
    def __init__(self, config):
        super(BertForPreTraining, self).__init__(config)
        self.bert = BertModel(config)
        self.cls = BertPreTrainingHeads(config, self.bert.embeddings.word_embeddings.weight)
        self.apply(self.init_bert_weights)

    def forward(self, input_ids, token_type_ids=None, attention_mask=None, masked_lm_labels=None, next_sentence_label=None, checkpoint_activations=False):
        sequence_output, pooled_output = self.bert(input_ids, token_type_ids, attention_mask,
                                                   output_all_encoded_layers=False, checkpoint_activations=checkpoint_activations)
        prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output)


        if masked_lm_labels is not None and next_sentence_label is not None:
            loss_fct = CrossEntropyLoss(ignore_index=-1)
            masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size).float(), masked_lm_labels.view(-1))
            next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2).float(), next_sentence_label.view(-1))
            total_loss = masked_lm_loss + next_sentence_loss
            return total_loss
        else:
            return prediction_scores, seq_relationship_score


class BertForMaskedLM(PreTrainedBertModel):
    """BERT model with the masked language modeling head.
    This module comprises the BERT model followed by the masked language modeling head.

    Params:
        config: a BertConfig class instance with the configuration to build a new model.

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
            with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
            `extract_features.py`, `run_classifier.py` and `run_squad.py`)
        `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
            types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
            a `sentence B` token (see BERT paper for more details).
        `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
            selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
            input sequence length in the current batch. It's the mask that we typically use for attention when
            a batch has varying length sentences.
        `masked_lm_labels`: masked language modeling labels: torch.LongTensor of shape [batch_size, sequence_length]
            with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss
            is only computed for the labels set in [0, ..., vocab_size]

    Outputs:
        if `masked_lm_labels` is  not `None`:
            Outputs the masked language modeling loss.
        if `masked_lm_labels` is `None`:
            Outputs the masked language modeling logits of shape [batch_size, sequence_length, vocab_size].

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

    config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
        num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

    model = BertForMaskedLM(config)
    masked_lm_logits_scores = model(input_ids, token_type_ids, input_mask)
    ```
    """
    def __init__(self, config):
        super(BertForMaskedLM, self).__init__(config)
        self.bert = BertModel(config)
        self.cls = BertOnlyMLMHead(config, self.bert.embeddings.word_embeddings.weight)
        self.apply(self.init_bert_weights)

    def forward(self, input_ids, token_type_ids=None, attention_mask=None, masked_lm_labels=None, checkpoint_activations=False):
        sequence_output, _ = self.bert(input_ids, token_type_ids, attention_mask,
                                       output_all_encoded_layers=False, checkpoint_activations=checkpoint_activations)
        prediction_scores = self.cls(sequence_output)

        if masked_lm_labels is not None:
            loss_fct = CrossEntropyLoss(ignore_index=-1)
            masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1))
            return masked_lm_loss
        else:
            return prediction_scores


class BertForNextSentencePrediction(PreTrainedBertModel):
    """BERT model with next sentence prediction head.
    This module comprises the BERT model followed by the next sentence classification head.

    Params:
        config: a BertConfig class instance with the configuration to build a new model.

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
            with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
            `extract_features.py`, `run_classifier.py` and `run_squad.py`)
        `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
            types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
            a `sentence B` token (see BERT paper for more details).
        `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
            selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
            input sequence length in the current batch. It's the mask that we typically use for attention when
            a batch has varying length sentences.
        `next_sentence_label`: next sentence classification loss: torch.LongTensor of shape [batch_size]
            with indices selected in [0, 1].
            0 => next sentence is the continuation, 1 => next sentence is a random sentence.

    Outputs:
        if `next_sentence_label` is not `None`:
            Outputs the total_loss which is the sum of the masked language modeling loss and the next
            sentence classification loss.
        if `next_sentence_label` is `None`:
            Outputs the next sentence classification logits of shape [batch_size, 2].

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

    config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
        num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

    model = BertForNextSentencePrediction(config)
    seq_relationship_logits = model(input_ids, token_type_ids, input_mask)
    ```
    """
    def __init__(self, config):
        super(BertForNextSentencePrediction, self).__init__(config)
        self.bert = BertModel(config)
        self.cls = BertOnlyNSPHead(config)
        self.apply(self.init_bert_weights)

    def forward(self, input_ids, token_type_ids=None, attention_mask=None, next_sentence_label=None, checkpoint_activations=False):
        _, pooled_output = self.bert(input_ids, token_type_ids, attention_mask,
                                     output_all_encoded_layers=False, checkpoint_activations=checkpoint_activations)
        seq_relationship_score = self.cls( pooled_output)

        if next_sentence_label is not None:
            loss_fct = CrossEntropyLoss(ignore_index=-1)
            next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
            return next_sentence_loss
        else:
            return seq_relationship_score


class BertForSequenceClassification(PreTrainedBertModel):
    """BERT model for classification.
    This module is composed of the BERT model with a linear layer on top of
    the pooled output.

    Params:
        `config`: a BertConfig class instance with the configuration to build a new model.
        `num_labels`: the number of classes for the classifier. Default = 2.

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
            with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
            `extract_features.py`, `run_classifier.py` and `run_squad.py`)
        `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
            types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
            a `sentence B` token (see BERT paper for more details).
        `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
            selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
            input sequence length in the current batch. It's the mask that we typically use for attention when
            a batch has varying length sentences.
        `labels`: labels for the classification output: torch.LongTensor of shape [batch_size]
            with indices selected in [0, ..., num_labels].

    Outputs:
        if `labels` is not `None`:
            Outputs the CrossEntropy classification loss of the output with the labels.
        if `labels` is `None`:
            Outputs the classification logits of shape [batch_size, num_labels].

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

    config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
        num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

    num_labels = 2

    model = BertForSequenceClassification(config, num_labels)
    logits = model(input_ids, token_type_ids, input_mask)
    ```
    """
    def __init__(self, config, num_labels=2):
        super(BertForSequenceClassification, self).__init__(config)
        self.num_labels = num_labels
        self.bert = BertModel(config)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, num_labels)
        self.apply(self.init_bert_weights)

    def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None, checkpoint_activations=False):
        _, pooled_output = self.bert(input_ids, token_type_ids, attention_mask, output_all_encoded_layers=False, checkpoint_activations=checkpoint_activations)
        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)

        if labels is not None:
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
            return loss
        else:
            return logits


class BertForMultipleChoice(PreTrainedBertModel):
    """BERT model for multiple choice tasks.
    This module is composed of the BERT model with a linear layer on top of
    the pooled output.

    Params:
        `config`: a BertConfig class instance with the configuration to build a new model.
        `num_choices`: the number of classes for the classifier. Default = 2.

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, num_choices, sequence_length]
            with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
            `extract_features.py`, `run_classifier.py` and `run_squad.py`)
        `token_type_ids`: an optional torch.LongTensor of shape [batch_size, num_choices, sequence_length]
            with the token types indices selected in [0, 1]. Type 0 corresponds to a `sentence A`
            and type 1 corresponds to a `sentence B` token (see BERT paper for more details).
        `attention_mask`: an optional torch.LongTensor of shape [batch_size, num_choices, sequence_length] with indices
            selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
            input sequence length in the current batch. It's the mask that we typically use for attention when
            a batch has varying length sentences.
        `labels`: labels for the classification output: torch.LongTensor of shape [batch_size]
            with indices selected in [0, ..., num_choices].

    Outputs:
        if `labels` is not `None`:
            Outputs the CrossEntropy classification loss of the output with the labels.
        if `labels` is `None`:
            Outputs the classification logits of shape [batch_size, num_labels].

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[[31, 51, 99], [15, 5, 0]], [[12, 16, 42], [14, 28, 57]]])
    input_mask = torch.LongTensor([[[1, 1, 1], [1, 1, 0]],[[1,1,0], [1, 0, 0]]])
    token_type_ids = torch.LongTensor([[[0, 0, 1], [0, 1, 0]],[[0, 1, 1], [0, 0, 1]]])
    config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
        num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

    num_choices = 2

    model = BertForMultipleChoice(config, num_choices)
    logits = model(input_ids, token_type_ids, input_mask)
    ```
    """
    def __init__(self, config, num_choices=2):
        super(BertForMultipleChoice, self).__init__(config)
        self.num_choices = num_choices
        self.bert = BertModel(config)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, 1)
        self.apply(self.init_bert_weights)

    def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None, checkpoint_activations=False):
        flat_input_ids = input_ids.view(-1, input_ids.size(-1))
        flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1))
        flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1))
        _, pooled_output = self.bert(flat_input_ids, flat_token_type_ids, flat_attention_mask, output_all_encoded_layers=False, checkpoint_activations=checkpoint_activations)
        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)
        reshaped_logits = logits.view(-1, self.num_choices)

        if labels is not None:
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(reshaped_logits, labels)
            return loss
        else:
            return reshaped_logits


class BertForTokenClassification(PreTrainedBertModel):
    """BERT model for token-level classification.
    This module is composed of the BERT model with a linear layer on top of
    the full hidden state of the last layer.

    Params:
        `config`: a BertConfig class instance with the configuration to build a new model.
        `num_labels`: the number of classes for the classifier. Default = 2.

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
            with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
            `extract_features.py`, `run_classifier.py` and `run_squad.py`)
        `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
            types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
            a `sentence B` token (see BERT paper for more details).
        `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
            selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
            input sequence length in the current batch. It's the mask that we typically use for attention when
            a batch has varying length sentences.
        `labels`: labels for the classification output: torch.LongTensor of shape [batch_size]
            with indices selected in [0, ..., num_labels].

    Outputs:
        if `labels` is not `None`:
            Outputs the CrossEntropy classification loss of the output with the labels.
        if `labels` is `None`:
            Outputs the classification logits of shape [batch_size, sequence_length, num_labels].

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

    config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
        num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

    num_labels = 2

    model = BertForTokenClassification(config, num_labels)
    logits = model(input_ids, token_type_ids, input_mask)
    ```
    """
    def __init__(self, config, num_labels=2):
        super(BertForTokenClassification, self).__init__(config)
        self.num_labels = num_labels
        self.bert = BertModel(config)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        #self.classifier = nn.Linear(config.hidden_size, num_labels)
        self.classifier = mpu.RowParallelLinear(
            input_size=config.hidden_size,
            output_size=num_labels,
            bias=True,
            input_is_parallel=True,
            stride=1,
            init_method=normal_init_method(mean=0.0,
                                           std=config.initializer_range))
        self.apply(self.init_bert_weights)

    def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None, checkpoint_activations=False):
        sequence_output, _ = self.bert(input_ids, token_type_ids, attention_mask, output_all_encoded_layers=False, checkpoint_activations=checkpoint_activations)
        with mpu.get_cuda_rng_tracker().fork():
            sequence_output = self.dropout(sequence_output)
        logits = self.classifier(sequence_output)

        if labels is not None:
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
            return loss
        else:
            return logits


class BertForQuestionAnswering(PreTrainedBertModel):
    """BERT model for Question Answering (span extraction).
    This module is composed of the BERT model with a linear layer on top of
    the sequence output that computes start_logits and end_logits

    Params:
        `config`: a BertConfig class instance with the configuration to build a new model.

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
            with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
            `extract_features.py`, `run_classifier.py` and `run_squad.py`)
        `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
            types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
            a `sentence B` token (see BERT paper for more details).
        `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
            selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
            input sequence length in the current batch. It's the mask that we typically use for attention when
            a batch has varying length sentences.
        `start_positions`: position of the first token for the labeled span: torch.LongTensor of shape [batch_size].
            Positions are clamped to the length of the sequence and position outside of the sequence are not taken
            into account for computing the loss.
        `end_positions`: position of the last token for the labeled span: torch.LongTensor of shape [batch_size].
            Positions are clamped to the length of the sequence and position outside of the sequence are not taken
            into account for computing the loss.

    Outputs:
        if `start_positions` and `end_positions` are not `None`:
            Outputs the total_loss which is the sum of the CrossEntropy loss for the start and end token positions.
        if `start_positions` or `end_positions` is `None`:
            Outputs a tuple of start_logits, end_logits which are the logits respectively for the start and end
            position tokens of shape [batch_size, sequence_length].

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

    config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
        num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

    model = BertForQuestionAnswering(config)
    start_logits, end_logits = model(input_ids, token_type_ids, input_mask)
    ```
    """
    def __init__(self, config):
        super(BertForQuestionAnswering, self).__init__(config)
        self.bert = BertModel(config)
        # TODO check with Google if it's normal there is no dropout on the token classifier of SQuAD in the TF version
        # self.dropout = nn.Dropout(config.hidden_dropout_prob)
        #self.qa_outputs = nn.Linear(config.hidden_size, 2)
        self.qa_outputs = mpu.RowParallelLinear(
            input_size=config.hidden_size,
            output_size=2,
            bias=True,
            input_is_parallel=True,
            stride=1,
            init_method=normal_init_method(mean=0.0,
                                           std=config.initializer_range))
        self.apply(self.init_bert_weights)

    def forward(self, input_ids, token_type_ids=None, attention_mask=None, start_positions=None, end_positions=None, checkpoint_activations=False):
        sequence_output, _ = self.bert(input_ids, token_type_ids, attention_mask, output_all_encoded_layers=False, checkpoint_activations=checkpoint_activations)
        logits = self.qa_outputs(sequence_output)
        start_logits, end_logits = logits.split(1, dim=-1)
        start_logits = start_logits.squeeze(-1)
        end_logits = end_logits.squeeze(-1)

        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, split add a dimension
            if len(start_positions.size()) > 1:
                start_positions = start_positions.squeeze(-1)
            if len(end_positions.size()) > 1:
                end_positions = end_positions.squeeze(-1)
            # sometimes the start/end positions are outside our model inputs, we ignore these terms
            ignored_index = start_logits.size(1)
            start_positions.clamp_(0, ignored_index)
            end_positions.clamp_(0, ignored_index)

            loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2
            return total_loss
        else:
            return start_logits, end_logits