datasets.py 35.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
# coding=utf-8
# Copyright (c) 2019, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""dataset objects for jsons, csvs, and BERT datasets"""

import os
import time
from operator import itemgetter
from bisect import bisect_right
import json
import csv
import math
import random
import tqdm
from itertools import accumulate

from torch.utils import data
import pandas as pd
import numpy as np

import nltk
from nltk import tokenize

from .lazy_loader import LazyLoader, exists_lazy
from .tokenization import Tokenization


class ShuffleDataset(data.Dataset):
    def __init__(self, ds):
        self.ds = ds
        self.shuffle_ids = list(range(len(self.ds)))
        random.shuffle(self.shuffle_ids)
        self.is_lazy = hasattr(ds, 'is_lazy') and ds.is_lazy
        if self.is_lazy:
            self.prompt_lens = [self.ds.prompt_lens[idx] for idx in self.shuffle_ids]
            self.text_lens = [self.ds.text_lens[idx] for idx in self.shuffle_ids]

    def __getitem__(self, idx):
        return self.ds[self.shuffle_ids[idx]]

    def __len__(self):
        return len(self.ds)


class ConcatDataset(data.Dataset):
    """
    Dataset to concatenate multiple datasets.
    Purpose: useful to assemble different existing datasets, possibly
    large-scale datasets as the concatenation operation is done in an
    on-the-fly manner.
    Arguments:
        datasets (sequence): List of datasets to be concatenated.
    """

    @staticmethod
    def cumsum(sequence):
        r, s = [], 0
        for e in sequence:
            l = len(e)
            r.append(l + s)
            s += l
        return r

    def __init__(self, datasets, **kwargs):
        super(ConcatDataset, self).__init__()
        assert len(datasets) > 0, 'datasets should not be an empty iterable'
        self.datasets = list(datasets)
        self.is_lazy = sum([isinstance(ds, LazyLoader) or (hasattr(ds, 'is_lazy') and ds.is_lazy) for ds in
                            self.datasets]) == len(self.datasets)
        self.cumulative_sizes = self.cumsum(self.datasets)
        self._X = None
        self._Y = None
        self._lens = None

    def get_text_len(self, idx):
        dataset_idx = bisect_right(self.cumulative_sizes, idx)
        if dataset_idx == 0:
            sample_idx = idx
        else:
            sample_idx = idx - self.cumulative_sizes[dataset_idx - 1]
        return self.datasets[dataset_idx].get_text_len(sample_idx)

    def SetTokenizer(self, tokenizer):
        for ds in self.datasets:
            ds.SetTokenizer(tokenizer)

    def GetTokenizer(self):
        return self.datasets[0].GetTokenizer()

    def __len__(self):
        return self.cumulative_sizes[-1]

    def __getitem__(self, idx):
        dataset_idx = bisect_right(self.cumulative_sizes, idx)
        if dataset_idx == 0:
            sample_idx = idx
        else:
            sample_idx = idx - self.cumulative_sizes[dataset_idx - 1]
        return self.datasets[dataset_idx][sample_idx]

    @property
    def lens(self):
        if self._lens is None:
            self._lens = []
            if self.is_lazy:
                for data in self.datasets:
                    self._lens.extend(data.lens)
            else:
                for data in self.datasets:
                    self._lens.extend([len(d['text']) if isinstance(d, dict) else len(d) for d in data])
        return self._lens

    @property
    def X(self):
        if self._X is None:
            self._X = []
            for data in self.datasets:
                self._X.extend(data.X)
        return self._X

    @property
    def Y(self):
        if self._Y is None:
            self._Y = []
            for data in self.datasets:
                self._Y.extend(list(data.Y))
            self._Y = np.array(self._Y)
        return self._Y


class SplitDataset(data.Dataset):
    """
    Dataset wrapper to access a subset of another dataset.
    Purpose: useful to index into existing datasets, possibly
    large-scale datasets as the subindexing operation is done in an
    on-the-fly manner.
    Arguments:
        ds (Dataset or array-like): List of datasets to be subindexed
        split_inds (1D array-like): List of indices part of subset
    """
    def __init__(self, ds, split_inds, **kwargs):
        self.split_inds = list(split_inds)
        self.wrapped_data = ds
        self.is_lazy = isinstance(ds, LazyLoader) or (hasattr(ds, 'is_lazy') and ds.is_lazy)
        self._X = None
        self._Y = None

    def __len__(self):
        return len(self.split_inds)

    def get_text_len(self, idx):
        return self.wrapped_data.get_text_len(self.split_inds[idx])

    def __getitem__(self, index):
        return self.wrapped_data[self.split_inds[index]]

    def SetTokenizer(self, tokenizer):
        self.wrapped_data.SetTokenizer(tokenizer)

    def GetTokenizer(self):
        return self.wrapped_data.GetTokenizer()

    @property
    def X(self):
        if self._X is None:
            self._X = itemgetter(*self.split_inds)(self.wrapped_data.X)
        return self._X

    @property
    def Y(self):
        if self._Y is None:
            self._Y = np.array(itemgetter(*self.split_inds)(self.wrapped_data.Y))
        return self._Y

    def __iter__(self):
        for idx in self.split_inds:
            yield self.wrapped_data[idx]

def split_ds(ds, split=[.8,.2,.0], shuffle=True):
    """
    Split a dataset into subsets given proportions of how
    much to allocate per split. If a split is 0% returns None for that split.
    Purpose: Useful for creating train/val/test splits
    Arguments:
        ds (Dataset or array-like): Data to be split.
        split (1D array-like): proportions to split `ds`. `sum(splits) != 0`
        shuffle (boolean): Randomly split dataset. Default: True
    """
    split_sum = sum(split)
    if split_sum == 0:
        raise Exception('Split cannot sum to 0.')
    split = np.array(split)
    split /= split_sum
    ds_len = len(ds)
    inds = np.arange(ds_len)
    if shuffle:
        np.random.shuffle(inds)
    start_idx = 0
    residual_idx = 0
    rtn_ds = [None]*len(split)
    for i, f in enumerate(split):
        if f != 0:
            proportion = ds_len*split[i]
            residual_idx += proportion % 1
            split_ = int(int(proportion) + residual_idx)
            split_inds = inds[start_idx:start_idx+max(split_, 1)]
            rtn_ds[i] = SplitDataset(ds, split_inds)
            start_idx += split_
            residual_idx %= 1
    return rtn_ds

class csv_dataset(data.Dataset):
    """
    Class for loading datasets from csv files.
    Purpose: Useful for loading data for unsupervised modeling or transfer tasks
    Arguments:
        path (str): Path to csv file with dataset.
        tokenizer (data_utils.Tokenizer): Tokenizer to use when processing text. Default: None
        preprocess_fn (callable): Callable that process a string into desired format.
        delim (str): delimiter for csv. Default: ','
        binarize_sent (bool): binarize label values to 0 or 1 if they\'re on a different scale. Default: False
        drop_unlabeled (bool): drop rows with unlabelled values. Always fills remaining empty
            columns with -1 (regardless if rows are dropped based on value) Default: False
        text_key (str): key to get text from csv. Default: 'sentence'
        label_key (str): key to get label from json dictionary. Default: 'label'
    Attributes:
        X (list): all strings from the csv file
        Y (np.ndarray): labels to train with
    """
    def __init__(self, path, tokenizer=None, preprocess_fn=None, delim=',',
                binarize_sent=False, drop_unlabeled=False, text_key='sentence', label_key='label',
                **kwargs):
        self.is_lazy = False
        self.preprocess_fn = preprocess_fn
        self.SetTokenizer(tokenizer)
        self.path = path
        self.delim = delim
        self.text_key = text_key
        self.label_key = label_key
        self.drop_unlabeled = drop_unlabeled

        if '.tsv' in self.path:
            self.delim = '\t'


        self.X = []
        self.Y = []
        try:
            cols = [text_key]
            if isinstance(label_key, list):
                cols += label_key
            else:
                cols += [label_key]
            data = pd.read_csv(self.path, sep=self.delim, usecols=cols, encoding='latin-1')
        except:
            data = pd.read_csv(self.path, sep=self.delim, usecols=[text_key], encoding='latin-1')

        data = data.dropna(axis=0)

        self.X = data[text_key].values.tolist()
        try:
            self.Y = data[label_key].values
        except Exception as e:
            self.Y = np.ones(len(self.X))*-1

        if binarize_sent:
            self.Y = binarize_labels(self.Y, hard=binarize_sent)

    def SetTokenizer(self, tokenizer):
        if tokenizer is None:
            self.using_tokenizer = False
            if not hasattr(self, '_tokenizer'):
                self._tokenizer = tokenizer
        else:
            self.using_tokenizer = True
            self._tokenizer = tokenizer

    def GetTokenizer(self):
        return self._tokenizer

    @property
    def tokenizer(self):
        if self.using_tokenizer:
            return self._tokenizer
        return None

    def __len__(self):
        return len(self.X)

    def __getitem__(self, index):
        """process+tokenize string and return string,label,and stringlen"""
        x = self.X[index]
        if self.tokenizer is not None:
            x = self.tokenizer.EncodeAsIds(x, self.preprocess_fn)
        elif self.preprocess_fn is not None:
            x = self.preprocess_fn(x)
        y = self.Y[index]
        if isinstance(y, str):
            if self.tokenizer is not None:
                y = self.tokenizer.EncodeAsIds(y, self.preprocess_fn)
            elif self.preprocess_fn is not None:
                y = self.preprocess_fn(y)
        return {'text': x, 'length': len(x), 'label': y}

    def write(self, writer_gen=None, path=None, skip_header=False):
        """
        given a generator of metrics for each of the data points X_i,
            write the metrics, text, and labels to a csv file
        """
        if path is None:
            path = self.path+'.results'
        print('generating csv at ' + path)
        with open(path, 'w') as csvfile:
            c = csv.writer(csvfile, delimiter=self.delim)
            if writer_gen is not None:
                #if first item of generator is a header of what the metrics mean then write header to csv file
                if not skip_header:
                    header = (self.label_key,)+tuple(next(writer_gen))+(self.text_key,)
                    c.writerow(header)
                for i, row in enumerate(writer_gen):
                    row = (self.Y[i],)+tuple(row)+(self.X[i],)
                    c.writerow(row)
            else:
                c.writerow([self.label_key, self.text_key])
                for row in zip(self.Y, self.X):
                    c.writerow(row)

class json_dataset(data.Dataset):
    """
    Class for loading datasets from a json dump.
    Purpose: Useful for loading data for unsupervised modeling or transfer tasks
    Arguments:
        path (str): path to json file with dataset.
        tokenizer (data_utils.Tokenizer): Tokenizer to use when processing text. Default: None
        preprocess_fn (callable): callable function that process a string into desired format.
            Takes string, maxlen=None, encode=None as arguments. Default: process_str
        text_key (str): key to get text from json dictionary. Default: 'sentence'
        label_key (str): key to get label from json dictionary. Default: 'label'
    Attributes:
        all_strs (list): list of all strings from the dataset
        all_labels (list): list of all labels from the dataset (if they have it)
    """
    def __init__(self, path, tokenizer=None, preprocess_fn=None, binarize_sent=False,
                text_key='sentence', label_key='label', loose_json=False, **kwargs):
        self.is_lazy = False
        self.preprocess_fn = preprocess_fn
        self.path = path
        self.SetTokenizer(tokenizer)
        self.X = []
        self.Y = []
        self.text_key = text_key
        self.label_key = label_key
        self.loose_json = loose_json

        for j in self.load_json_stream(self.path):
            s = j[text_key]
            self.X.append(s)
            self.Y.append(j[label_key])

        if binarize_sent:
            self.Y = binarize_labels(self.Y, hard=binarize_sent)

    def SetTokenizer(self, tokenizer):
        if tokenizer is None:
            self.using_tokenizer = False
            if not hasattr(self, '_tokenizer'):
                self._tokenizer = tokenizer
        else:
            self.using_tokenizer = True
            self._tokenizer = tokenizer

    def GetTokenizer(self):
        return self._tokenizer

    @property
    def tokenizer(self):
        if self.using_tokenizer:
            return self._tokenizer
        return None

    def __getitem__(self, index):
        """gets the index'th string from the dataset"""
        x = self.X[index]
        if self.tokenizer is not None:
            x = self.tokenizer.EncodeAsIds(x, self.preprocess_fn)
        elif self.preprocess_fn is not None:
            x = self.preprocess_fn(x)
        y = self.Y[index]
        if isinstance(y, str):
            if self.tokenizer is not None:
                y = self.tokenizer.EncodeAsIds(y, self.preprocess_fn)
            elif self.preprocess_fn is not None:
                y = self.preprocess_fn(y)
        return {'text': x, 'length': len(x), 'label': y}

    def __len__(self):
        return len(self.X)

    def write(self, writer_gen=None, path=None, skip_header=False):
        """
        given a generator of metrics for each of the data points X_i,
            write the metrics, text, and labels to a json file
        """
        if path is None:
            path = self.path+'.results'

        jsons = []

        if writer_gen is not None:
            #if first item of generator is a header of what the metrics mean then write header to csv file
            def gen_helper():
                keys = {}
                keys[0] = self.label_key
                if not skip_header:
                    for idx, k in enumerate(tuple(next(writer_gen))):
                        keys[idx+1] = k
                for i, row in enumerate(writer_gen):
                    if i == 0 and skip_header:
                        for idx, _ in enumerate(row):
                            keys[idx+1] = 'metric_%d'%(idx,)
                    j = {}
                    for idx, v in enumerate((self.Y[i],)+tuple(row)):
                        k = keys[idx]
                        j[k] = v
                    yield j
        else:
            def gen_helper():
                for y in self.Y:
                    j = {}
                    j[self.label_key] = y
                    yield j

        def out_stream():
            for i, j in enumerate(gen_helper()):
                j[self.text_key] = self.X[i]
                yield j

        self.save_json_stream(path, out_stream())

    def save_json_stream(self, save_path, json_stream):
        if self.loose_json:
            with open(save_path, 'w') as f:
                for i, j in enumerate(json_stream):
                    write_string = ''
                    if i != 0:
                        write_string = '\n'
                    write_string += json.dumps(j)
                    f.write(write_string)
        else:
            jsons = [j for j in json_stream]
            json.dump(jsons, open(save_path, 'w'), separators=(',', ':'))

    def load_json_stream(self, load_path):
        if not self.loose_json:
            jsons = json.load(open(load_path, 'r'))
            generator = iter(jsons)
        else:
            def gen_helper():
                with open(load_path, 'r') as f:
                    for row in f:
                        yield json.loads(row)
            generator = gen_helper()

        for j in generator:
            if self.label_key not in j:
                j[self.label_key] = -1
            yield j


class XLDataset(data.Dataset):
    def __init__(self, ds, tokenizer, max_seq_len=1024, mem_len=None, sample_across_doc=True, **kwargs):
        self.ds = ds
        self.tokenizer = tokenizer
        self.max_seq_len = max_seq_len
        if mem_len is None:
            mem_len = max_seq_len
        self.mem_len = mem_len
        self.sample_across_doc = sample_across_doc
        self.indices, self.num_samples = None, None
        if hasattr(self.ds, 'is_lazy') and self.ds.is_lazy:
            self.is_lazy = True
        self.init_indices()

    def init_indices(self):
        if self.is_lazy:
            lens = np.array([self.ds.get_text_len(idx) for idx in range(len(self.ds))])
        else:
            lens = np.array([len(d['prompt']) + len(d['text']) if isinstance(d, dict) else len(d) for d in self.ds])
        self.indices = list(accumulate(lens))
        self.num_samples = self.indices[-1] // self.max_seq_len + 1

    def __len__(self):
        return self.num_samples

    def __getitem__(self, idx):
        tokens, targets, loss_mask, attention_mask = self.getidx(idx)
        tokens = self.pad_seq(tokens)
        targets = self.pad_seq(targets)
        loss_mask = self.pad_seq(loss_mask, pad_id=0)
        return {'text': np.array(tokens), "target": np.array(targets), "loss_mask": np.array(loss_mask),
                "attention_mask": np.array(attention_mask)}

    def getidx(self, idx):
        tokens, targets, loss_masks = [], [], []
        attention_mask = np.concatenate((np.zeros((self.max_seq_len, self.mem_len), dtype=np.long),
                                         np.ones((self.max_seq_len, self.max_seq_len), dtype=np.long)), axis=1)
        sample_idx = bisect_right(self.indices, idx * self.max_seq_len)
        last_end = 0 if sample_idx == 0 else self.indices[sample_idx - 1]
        token_offset = idx * self.max_seq_len - last_end
        if token_offset != 0:
            history = min(self.mem_len, token_offset)
            attention_mask[:, -self.max_seq_len-history:-self.max_seq_len] = 1
        count = 0
        while len(tokens) < self.max_seq_len and sample_idx < len(self.ds):
            item = self.ds[sample_idx]
            text, masks = item['tokens'], item['loss_masks']
            text = text + [self.tokenizer.get_command('eos').Id]
            end = min(len(text) - 1, token_offset + self.max_seq_len - len(tokens))
            masks = masks + [1]
            if count > 0:
                current = len(tokens)
                attention_mask[current:, :current + self.mem_len] = 0
            tokens += text[token_offset: end]
            targets += text[token_offset + 1: end + 1]
            loss_masks += masks[token_offset + 1: end + 1]
            count += 1
            sample_idx += 1
            token_offset = 0
        return tokens, targets, loss_masks, attention_mask

    def pad_seq(self, seq, pad_id=None):
        total_tokens = self.max_seq_len
        num_pad_tokens = max(0, total_tokens - len(seq))
        seq += [self.tokenizer.get_command('pad').Id if pad_id is None else pad_id]*(num_pad_tokens)
        return seq


class GPT2Dataset(data.Dataset):

    def __init__(self, ds, tokenizer,
                 max_seq_len=1024,
                 num_samples=None,
                 weighted=True,
                 sample_across_doc=True,
                 random_across_doc_sampling=True,
                 sentence_start=False, **kwargs):
        """
        sentence_start: the stripped article must start with a complete sentence
        """
        self.ds = ds
        self.ds_len = len(self.ds)
        self.num_samples = num_samples
        if num_samples is None:
            self.num_samples = 1000 * self.ds_len
        self.max_seq_len = max_seq_len
        self.tokenizer = tokenizer
        self.weighted = weighted
        self.sample_across_doc = sample_across_doc
        self.random_across_doc_sampling = random_across_doc_sampling
        self.sentence_start = sentence_start
        self.weighting, self.total_len = None, None
        self.is_lazy = False
        if hasattr(self.ds, 'is_lazy') and self.ds.is_lazy:
            self.is_lazy = True
        self.init_weighting()

    def init_weighting(self):
        if self.weighted:
            if self.is_lazy:
                lens = np.array([self.ds.get_text_len(idx) for idx in range(len(self.ds))])
            else:
                lens = np.array([len(d['text']) if isinstance(d, dict)
                                 else len(d) for d in self.ds])
            self.total_len = np.sum(lens)
            self.weighting = list(accumulate(lens))
        else:
            self.weighting = None

    def get_weighted_samples(self, np_rng):
        if self.weighting is not None:
            idx = np_rng.randint(self.total_len)
            return bisect_right(self.weighting, idx)
        else:
            return np_rng.randint(self.ds_len)

    def __len__(self):
        return self.num_samples

    def __getitem__(self, idx):
        # init rng
        rng = random.Random(idx)
        rng = np.random.RandomState(seed=[rng.randint(0, 2**32-1) for _ in range(16)])

        # get possibly weighted random index from dataset
        data_idx = self.get_weighted_samples(rng)
#        data_idx = rng.choice(self.ds_len, p=self.weighting)
        tokens, loss_mask = self.getidx(data_idx)

        # truncate or pad tokens
        num_tokens = len(tokens)
        tokens_to_strip = num_tokens - self.max_seq_len - 1

        # randomly choose a position for start
        if tokens_to_strip > 0:
            strip_left_tokens = rng.randint(tokens_to_strip + 1)
            tokens = tokens[strip_left_tokens:]
            loss_mask = loss_mask[strip_left_tokens:]
            # if self.sentence_start:
            #     token_copy = list(tokens)
            #     not_done = True
            #     while (len(token_copy) > 0) and not_done:
            #         tok = token_copy.pop(0)
            #         if self.contains_sentence_end(tok):
            #             tokens = token_copy
            #             not_done = False
            strip_right_rokens = len(tokens) - self.max_seq_len - 1
            if strip_right_rokens > 0:
                tokens = tokens[:-strip_right_rokens]
                loss_mask = loss_mask[:-strip_right_rokens]
        # Sample multiple documents
        if self.sample_across_doc:
            while (len(tokens) < (self.max_seq_len + 1)):
                if self.random_across_doc_sampling:
                    data_idx = self.get_weighted_samples(rng)
                else:
                    data_idx = (data_idx + 1) % self.ds_len
                new_tokens, new_loss_mask = self.getidx(data_idx)
                tokens += new_tokens
                loss_mask += new_loss_mask
            tokens = tokens[:(self.max_seq_len+1)]
            loss_mask = loss_mask[:(self.max_seq_len + 1)]

        tokens = self.pad_seq(tokens)
        loss_mask = self.pad_seq(loss_mask, pad_id=0)
        return {'text': np.array(tokens), "loss_mask": np.array(loss_mask)}

    def getidx(self, data_idx):
        data = self.ds[data_idx]
        tokens, loss_masks = data['tokens'], data['loss_masks']
        tokens = tokens + [self.tokenizer.get_command('eos').Id]
        loss_masks = loss_masks + [1]
        return tokens, loss_masks

    def pad_seq(self, seq, pad_id=None):
        total_tokens = self.max_seq_len + 1
        num_pad_tokens = max(0, total_tokens - len(seq))
        seq += [self.tokenizer.get_command('pad').Id if pad_id is None else pad_id]*(num_pad_tokens)
        return seq

    # TODO: rewrite this function for chinese
    def contains_sentence_end(self, tok):
        tok = self.tokenizer.IdToToken(tok)
        if '.' in tok:
            return True
        if '?' in tok:
            return True
        if '!' in tok:
            return True
        return False

class bert_sentencepair_dataset(data.Dataset):
    """
    Dataset containing sentencepairs for BERT training. Each index corresponds to a randomly generated sentence pair.
    Arguments:
        ds (Dataset or array-like): data corpus to use for training
        max_seq_len (int): maximum sequence length to use for a sentence pair
        mask_lm_prob (float): proportion of tokens to mask for masked LM
        max_preds_per_seq (int): Maximum number of masked tokens per sentence pair. Default: math.ceil(max_seq_len*mask_lm_prob/10)*10
        short_seq_prob (float): Proportion of sentence pairs purposefully shorter than max_seq_len
        dataset_size (int): number of random sentencepairs in the dataset. Default: len(ds)*(len(ds)-1)

    """
    def __init__(self, ds, max_seq_len=512, mask_lm_prob=.15, max_preds_per_seq=None, short_seq_prob=.01, dataset_size=None, presplit_sentences=False, weighted=True,**kwargs):
        self.ds = ds
        self.ds_len = len(self.ds)
        self.tokenizer = self.ds.GetTokenizer()
        self.vocab_words = list(self.tokenizer.text_token_vocab.values())
        self.ds.SetTokenizer(None)
        self.max_seq_len = max_seq_len
        self.mask_lm_prob = mask_lm_prob
        if max_preds_per_seq is None:
            max_preds_per_seq = math.ceil(max_seq_len*mask_lm_prob /10)*10
        self.max_preds_per_seq = max_preds_per_seq
        self.short_seq_prob = short_seq_prob
        self.dataset_size = dataset_size
        if self.dataset_size is None:
            self.dataset_size = self.ds_len * (self.ds_len-1)
        self.presplit_sentences = presplit_sentences
        if not self.presplit_sentences:
            nltk.download('punkt', download_dir="./nltk")
        self.weighted = weighted
        self.get_weighting()

    def get_weighting(self):
        if self.weighted:
            if hasattr(self.ds, 'is_lazy') and self.ds.is_lazy:
                lens = np.array(self.ds.lens)
            else:
                lens = np.array([len(d['text']) if isinstance(d, dict) else len(d) for d in self.ds])
            self.total_len = np.sum(lens)
            self.weighting = list(accumulate(lens))
        else:
            self.weighting = None

    def get_weighted_samples(self, np_rng):
        if self.weighting is not None:
            idx = np_rng.randint(self.total_len)
            return bisect_right(self.weighting, idx)
        else:
            return np_rng.randint(self.ds_len)

    def __len__(self):
        return self.dataset_size

    def __getitem__(self, idx):
        # get rng state corresponding to index (allows deterministic random pair)
        rng = random.Random(idx)
        np_rng = np.random.RandomState(seed=[rng.randint(0, 2**32-1) for _ in range(16)])
        # get seq length
        target_seq_length = self.max_seq_len
        short_seq = False
        if rng.random() < self.short_seq_prob:
            target_seq_length = rng.randint(2, target_seq_length)
            short_seq = True

        # get sentence pair and label
        is_random_next = None
        lena = 0
        lenb = 0
        while (is_random_next is None) or (lena < 1) or (lenb < 1):
            tokensa, tokensb, is_random_next = self.create_random_sentencepair(target_seq_length, rng, np_rng)
            lena = len(tokensa[0])
            lenb = len(tokensb[0])

        # truncate sentence pair to max_seq_len
        tokensa, tokensb = self.truncate_seq_pair(tokensa, tokensb, self.max_seq_len, rng)
        # join sentence pair, mask, and pad
        tokens, mask, mask_labels, pad_mask = self.create_masked_lm_predictions(tokensa, tokensb, self.mask_lm_prob, self.max_preds_per_seq, self.vocab_words, rng)
        sample = {'text': np.array(tokens[0]), 'types': np.array(tokens[1]), 'is_random': int(is_random_next), 'mask': np.array(mask), 'mask_labels': np.array(mask_labels), 'pad_mask': np.array(pad_mask)}
        return sample

    def sentence_split(self, document):
        """split document into sentences"""
        lines = document.split('\n')
        if self.presplit_sentences:
            return [line for line in lines if line]
        rtn = []
        for line in lines:
            if line != '':
                rtn.extend(tokenize.sent_tokenize(line))
        return rtn

    def sentence_tokenize(self, sent, sentence_num=0, beginning=False, ending=False):
        """tokenize sentence and get token types"""
        tokens = self.tokenizer.EncodeAsIds(sent).tokenization
        str_type = 'str' + str(sentence_num)
        token_types = [self.tokenizer.get_type(str_type).Id]*len(tokens)
        return tokens, token_types

    def get_doc(self, idx):
        """gets text of document corresponding to idx"""
        rtn = self.ds[idx]
        if isinstance(rtn, dict):
            rtn = rtn['text']
        return rtn

    def create_random_sentencepair(self, target_seq_length, rng, np_rng):
        """
        fetches a random sentencepair corresponding to rng state similar to
        https://github.com/google-research/bert/blob/master/create_pretraining_data.py#L248-L294
        """
        is_random_next = None

        curr_strs = []
        curr_str_types = []
        curr_len = 0

        while curr_len < 1:
            curr_len = 0
            doc_a = None
            while doc_a is None:
                if self.weighted:
                    # doc_a_idx = np_rng.choice(self.ds_len, p=self.weighting)
                    doc_a_idx = self.get_weighted_samples(np_rng)
                else:
                    doc_a_idx = rng.randint(0, self.ds_len-1)
                doc_a = self.sentence_split(self.get_doc(doc_a_idx))
                if not doc_a:
                    doc_a = None

            random_start_a = rng.randint(0, len(doc_a)-1)
            while random_start_a < len(doc_a):
                sentence = doc_a[random_start_a]
                sentence, sentence_types = self.sentence_tokenize(sentence, 0, random_start_a == 0, random_start_a == len(doc_a))
                curr_strs.append(sentence)
                curr_str_types.append(sentence_types)
                curr_len += len(sentence)
                if random_start_a == len(doc_a) - 1 or curr_len >= target_seq_length:
                    break
                random_start_a = (random_start_a+1)

        if curr_strs:
            num_a = 1
            if len(curr_strs) >= 2:
                num_a = rng.randint(0, len(curr_strs))

            tokens_a = []
            token_types_a = []
            for j in range(num_a):
                tokens_a.extend(curr_strs[j])
                token_types_a.extend(curr_str_types[j])

            tokens_b = []
            token_types_b = []
            is_random_next = False
            if len(curr_strs) == 1 or rng.random() < 0.5:
                is_random_next = True
                target_b_length = target_seq_length - len(tokens_a)
                b_len = 0
                while b_len < 1:
                    doc_b = None
                    while doc_b is None:
                        doc_b_idx = rng.randint(0, self.ds_len - 2)
                        doc_b_idx += int(doc_b_idx >= doc_a_idx)

                        doc_b = self.sentence_split(self.get_doc(doc_b_idx))
                        if not doc_b:
                            doc_b = None

                    random_start_b = rng.randint(0, len(doc_b)-1)
                    while random_start_b < len(doc_b):
                        sentence_b = doc_b[random_start_b]
                        new_b_tokens, new_b_types = self.sentence_tokenize(sentence_b, 1, random_start_b == 0, random_start_b == len(doc_b))
                        b_len += len(new_b_tokens)
                        tokens_b.extend(new_b_tokens)
                        token_types_b.extend(new_b_types)
                        if len(tokens_b) >= target_b_length:
                            break
                        random_start_b = (random_start_b+1)
            else:
                is_random_next = False
                for j in range(num_a, len(curr_strs)):
                    tokens_b.extend(curr_strs[j])
                    token_types_b.extend(curr_str_types[j])

        return (tokens_a, token_types_a), (tokens_b, token_types_b), is_random_next

    def truncate_seq_pair(self, a, b, max_seq_len, rng):
        """
        Truncate sequence pair according to original BERT implementation:
        https://github.com/google-research/bert/blob/master/create_pretraining_data.py#L391
        """
        tokens_a, token_types_a = a
        tokens_b, token_types_b = b
        max_num_tokens = max_seq_len - 3
        while True:
            len_a = len(tokens_a)
            len_b = len(tokens_b)
            total_length = len_a + len_b
            if total_length <= max_num_tokens:
                break
            if len(tokens_a) > len(tokens_b):
                trunc_tokens = tokens_a
                trunc_types = token_types_a
            else:
                trunc_tokens = tokens_b
                trunc_types = token_types_b

            assert len(trunc_tokens) >= 1

            if rng.random() < 0.5:
                trunc_tokens.pop(0)
                trunc_types.pop(0)
            else:
                trunc_tokens.pop()
                trunc_types.pop()
        return (tokens_a, token_types_a), (tokens_b, token_types_b)

    def mask_token(self, idx, tokens, types, vocab_words, rng):
        """
        helper function to mask `idx` token from `tokens` according to
        section 3.3.1 of https://arxiv.org/pdf/1810.04805.pdf
        """
        label = tokens[idx]
        if rng.random() < 0.8:
            new_label = self.tokenizer.get_command('MASK').Id
        else:
            if rng.random() < 0.5:
                new_label = label
            else:
                new_label = rng.choice(vocab_words)

        tokens[idx] = new_label

        return label

    def pad_seq(self, seq):
        """helper function to pad sequence pair"""
        num_pad = max(0, self.max_seq_len - len(seq))
        pad_mask = [0] * len(seq) + [1] * num_pad
        seq += [self.tokenizer.get_command('pad').Id] * num_pad
        return seq, pad_mask

    def create_masked_lm_predictions(self, a, b, mask_lm_prob, max_preds_per_seq, vocab_words, rng):
        """
        Mask sequence pair for BERT training according to:
        https://github.com/google-research/bert/blob/master/create_pretraining_data.py#L338
        """
        tokens_a, token_types_a = a
        tokens_b, token_types_b = b
        tokens = [self.tokenizer.get_command('ENC').Id] + tokens_a + [self.tokenizer.get_command('sep').Id] + tokens_b + [self.tokenizer.get_command('sep').Id]
        token_types = [token_types_a[0]] + token_types_a + [token_types_a[0]] + token_types_b + [token_types_b[0]]

        len_a = len(tokens_a)
        len_b = len(tokens_b)

        cand_indices = [idx+1 for idx in range(len_a)] + [idx+2+len_a for idx in range(len_b)]

        rng.shuffle(cand_indices)

        output_tokens, pad_mask = self.pad_seq(list(tokens))
        output_types, _ = self.pad_seq(list(token_types))

        num_to_predict = min(max_preds_per_seq, max(1, int(round(len(tokens) * mask_lm_prob))))

        mask = [0] * len(output_tokens)
        mask_labels = [-1] * len(output_tokens)

        for idx in sorted(cand_indices[:num_to_predict]):
            mask[idx] = 1
            label = self.mask_token(idx, output_tokens, output_types, vocab_words, rng)
            mask_labels[idx] = label

        return (output_tokens, output_types), mask, mask_labels, pad_mask