arguments.py 23.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
# coding=utf-8
# Copyright (c) 2019, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""argparser configuration"""

import argparse
import os
import torch
import json


def add_model_config_args(parser):
    """Model arguments"""

    group = parser.add_argument_group('model', 'model configuration')

    group.add_argument('--transformer-xl', action='store_true', help='use transformer-xl for training')
    group.add_argument('--pretrained-bert', action='store_true',
                       help='use a pretrained bert-large-uncased model instead'
                            'of initializing from scratch. See '
                            '--tokenizer-model-type to specify which pretrained '
                            'BERT model to use')
    group.add_argument('--attention-dropout', type=float, default=0.1,
                       help='dropout probability for attention weights')
    group.add_argument('--num-attention-heads', type=int, default=16,
                       help='num of transformer attention heads')
    group.add_argument('--hidden-size', type=int, default=1024,
                       help='tansformer hidden size')
    group.add_argument('--intermediate-size', type=int, default=None,
                       help='transformer embedding dimension for FFN'
                            'set to 4*`--hidden-size` if it is None')
    group.add_argument('--num-layers', type=int, default=24,
                       help='num decoder layers')
    group.add_argument('--layernorm-epsilon', type=float, default=1e-5,
                       help='layer norm epsilon')
    group.add_argument('--hidden-dropout', type=float, default=0.1,
                       help='dropout probability for hidden state transformer')
    group.add_argument('--max-position-embeddings', type=int, default=512,
                       help='maximum number of position embeddings to use')
    group.add_argument('--vocab-size', type=int, default=30522,
                       help='vocab size to use for non-character-level '
                            'tokenization. This value will only be used when '
                            'creating a tokenizer')
    group.add_argument('--deep-init', action='store_true',
                       help='initialize bert model similar to gpt2 model.'
                            'scales initialization of projection layers by a '
                            'factor of 1/sqrt(2N). Necessary to train bert '
                            'models larger than BERT-Large.')
    group.add_argument('--make-vocab-size-divisible-by', type=int, default=128,
                       help='Pad the vocab size to be divisible by this value.'
                            'This is added for computational efficieny reasons.')
    group.add_argument('--cpu-optimizer', action='store_true',
                       help='Run optimizer on CPU')
    group.add_argument('--cpu_torch_adam', action='store_true',
                       help='Use Torch Adam as optimizer on CPU.')

    return parser


def add_fp16_config_args(parser):
    """Mixed precision arguments."""

    group = parser.add_argument_group('fp16', 'fp16 configurations')

    group.add_argument('--fp16', action='store_true',
                       help='Run model in fp16 mode')
    group.add_argument('--fp32-embedding', action='store_true',
                       help='embedding in fp32')
    group.add_argument('--fp32-layernorm', action='store_true',
                       help='layer norm in fp32')
    group.add_argument('--fp32-tokentypes', action='store_true',
                       help='embedding token types in fp32')
    group.add_argument('--fp32-allreduce', action='store_true',
                       help='all-reduce in fp32')
    group.add_argument('--hysteresis', type=int, default=2,
                       help='hysteresis for dynamic loss scaling')
    group.add_argument('--loss-scale', type=float, default=None,
                       help='Static loss scaling, positive power of 2 '
                            'values can improve fp16 convergence. If None, dynamic'
                            'loss scaling is used.')
    group.add_argument('--loss-scale-window', type=float, default=1000,
                       help='Window over which to raise/lower dynamic scale')
    group.add_argument('--min-scale', type=float, default=1,
                       help='Minimum loss scale for dynamic loss scale')

    return parser


def add_training_args(parser):
    """Training arguments."""

    group = parser.add_argument_group('train', 'training configurations')

    group.add_argument('--experiment-name', type=str, default="gpt-345M",
                       help="The experiment name for summary and checkpoint")
    group.add_argument('--batch-size', type=int, default=4,
                       help='Data Loader batch size')
    group.add_argument('--weight-decay', type=float, default=0.01,
                       help='weight decay coefficient for L2 regularization')
    group.add_argument('--checkpoint-activations', action='store_true',
                       help='checkpoint activation to allow for training '
                            'with larger models and sequences')
    group.add_argument('--checkpoint-num-layers', type=int, default=1,
                       help='chunk size (number of layers) for checkpointing')
    group.add_argument('--deepspeed-activation-checkpointing', action='store_true',
                       help='uses activation checkpointing from deepspeed')
    group.add_argument('--clip-grad', type=float, default=1.0,
                       help='gradient clipping')
    group.add_argument('--train-iters', type=int, default=1000000,
                       help='total number of iterations to train over all training runs')
    group.add_argument('--log-interval', type=int, default=100,
                       help='report interval')
    group.add_argument('--exit-interval', type=int, default=None,
                       help='Exit the program after this many new iterations.')
    group.add_argument('--summary-dir', type=str, default="", help="The directory to store the summary")
    group.add_argument('--seed', type=int, default=1234,
                       help='random seed')
    # Batch prodecuer arguments
    group.add_argument('--reset-position-ids', action='store_true',
                       help='Reset posistion ids after end-of-document token.')
    group.add_argument('--reset-attention-mask', action='store_true',
                       help='Reset self attention maske after '
                            'end-of-document token.')

    # Learning rate.
    group.add_argument('--lr-decay-iters', type=int, default=None,
                       help='number of iterations to decay LR over,'
                            ' If None defaults to `--train-iters`*`--epochs`')
    group.add_argument('--lr-decay-style', type=str, default='linear',
                       choices=['constant', 'linear', 'cosine', 'exponential'],
                       help='learning rate decay function')
    group.add_argument('--lr-decay-ratio', type=float, default=0.1)
    group.add_argument('--lr', type=float, default=1.0e-4,
                       help='initial learning rate')
    group.add_argument('--warmup', type=float, default=0.01,
                       help='percentage of data to warmup on (.01 = 1% of all '
                            'training iters). Default 0.01')
    # model checkpointing
    group.add_argument('--save', type=str, default=None,
                       help='Output directory to save checkpoints to.')
    group.add_argument('--save-interval', type=int, default=5000,
                       help='number of iterations between saves')
    group.add_argument('--no-save-optim', action='store_true',
                       help='Do not save current optimizer.')
    group.add_argument('--no-save-rng', action='store_true',
                       help='Do not save current rng state.')
    group.add_argument('--load', type=str, default=None,
                       help='Path to a directory containing a model checkpoint.')
    group.add_argument('--no-load-optim', action='store_true',
                       help='Do not load optimizer when loading checkpoint.')
    group.add_argument('--no-load-lr-scheduler', action='store_true',
                       help='Do not load lr scheduler when loading checkpoint.')
    group.add_argument('--no-load-rng', action='store_true',
                       help='Do not load rng state when loading checkpoint.')
    group.add_argument('--finetune', action='store_true',
                       help='Load model for finetuning. Do not load optimizer '
                            'or rng state from checkpoint and set iteration to 0. '
                            'Assumed when loading a release checkpoint.')
    group.add_argument('--resume-dataloader', action='store_true',
                       help='Resume the dataloader when resuming training. '
                            'Does not apply to tfrecords dataloader, try resuming'
                            'with a different seed in this case.')
    # distributed training args
    group.add_argument('--distributed-backend', default='nccl',
                       help='which backend to use for distributed '
                            'training. One of [gloo, nccl]')

    group.add_argument('--local_rank', type=int, default=None,
                       help='local rank passed from distributed launcher')

    return parser


def add_evaluation_args(parser):
    """Evaluation arguments."""

    group = parser.add_argument_group('validation', 'validation configurations')

    group.add_argument('--eval-batch-size', type=int, default=None,
                       help='Data Loader batch size for evaluation datasets.'
                            'Defaults to `--batch-size`')
    group.add_argument('--eval-iters', type=int, default=100,
                       help='number of iterations to run for evaluation'
                            'validation/test for')
    group.add_argument('--eval-interval', type=int, default=1000,
                       help='interval between running evaluation on validation set')
    group.add_argument('--eval-seq-length', type=int, default=None,
                       help='Maximum sequence length to process for '
                            'evaluation. Defaults to `--seq-length`')
    group.add_argument('--eval-max-preds-per-seq', type=int, default=None,
                       help='Maximum number of predictions to use for '
                            'evaluation. Defaults to '
                            'math.ceil(`--eval-seq-length`*.15/10)*10')
    group.add_argument('--overlapping-eval', type=int, default=32,
                       help='sliding window for overlapping eval ')
    group.add_argument('--cloze-eval', action='store_true',
                       help='Evaluation dataset from `--valid-data` is a cloze task')
    group.add_argument('--eval-hf', action='store_true',
                       help='perform evaluation with huggingface openai model.'
                            'use `--load` to specify weights path to be loaded')
    group.add_argument('--load-openai', action='store_true',
                       help='load openai weights into our model. Use `--load` '
                            'to specify weights path to be loaded')

    return parser


def add_text_generate_args(parser):
    """Text generate arguments."""

    group = parser.add_argument_group('Text generation', 'configurations')
    group.add_argument("--temperature", type=float, default=1.0)
    group.add_argument("--top_p", type=float, default=0.85)
    group.add_argument("--top_k", type=int, default=0)
    group.add_argument("--out-seq-length", type=int, default=256)
    group.add_argument("--hierarchical", action='store_true')
    group.add_argument("--test_data_path", type=str, default=None)
    
    group.add_argument("--dist_lambda", type=float, default=5.0)
    group.add_argument("--min_dist_lambda", type=float, default=5.0)
    group.add_argument("--dist_lambda_decay_rate", type=float, default=5.0)
    group.add_argument("--perplexity_lambda", type=float, default=5.0)

    group.add_argument("--beam_number", type=int, default=5)
    group.add_argument("--min_beam_number", type=int, default=5)
    group.add_argument("--beam_token_number", type=int, default=5)
    group.add_argument("--beam_candidate_number", type=int, default=5)
    group.add_argument("--min_beam_candidate_number", type=int, default=5)

    group.add_argument("--max_seq_len", type=int, default=5)
    group.add_argument("--sent_generate_num", type=int, default=5)
    

    return parser


def add_data_args(parser):
    """Train/valid/test data arguments."""

    group = parser.add_argument_group('data', 'data configurations')

    group.add_argument('--model-parallel-size', type=int, default=1,
                       help='size of the model parallel.')
    group.add_argument('--shuffle', action='store_true',
                       help='Shuffle data. Shuffling is deterministic '
                            'based on seed and current epoch.')
    group.add_argument('--train-data', nargs='+', default=None,
                       help='Whitespace separated filenames or corpora names '
                            'for training.')
    group.add_argument('--xl-dataset', action='store_true')
    group.add_argument('--use-npy-data-loader', action='store_true',
                       help='Use the numpy data loader. If set, then'
                            'train-data-path, val-data-path, and test-data-path'
                            'should also be provided.')
    group.add_argument('--train-data-path', type=str, default='',
                       help='path to the training data')
    group.add_argument('--val-data-path', type=str, default='',
                       help='path to the validation data')
    group.add_argument('--test-data-path', type=str, default='',
                       help='path to the test data')
    group.add_argument('--input-data-sizes-file', type=str, default='sizes.txt',
                       help='the filename containing all the shards sizes')

    group.add_argument('--delim', default=',',
                       help='delimiter used to parse csv data files')
    group.add_argument('--text-key', default='sentence',
                       help='key to use to extract text from json/csv')
    group.add_argument('--eval-text-key', default=None,
                       help='key to use to extract text from '
                            'json/csv evaluation datasets')
    group.add_argument('--valid-data', nargs='*', default=None,
                       help="""Filename for validation data.""")
    group.add_argument('--split', default='1000,1,1',
                       help='comma-separated list of proportions for training,'
                            ' validation, and test split')
    group.add_argument('--test-data', nargs='*', default=None,
                       help="""Filename for testing""")

    group.add_argument('--lazy-loader', action='store_true',
                       help='whether to lazy read the data set')
    group.add_argument('--loose-json', action='store_true',
                       help='Use loose json (one json-formatted string per '
                            'newline), instead of tight json (data file is one '
                            'json string)')
    group.add_argument('--presplit-sentences', action='store_true',
                       help='Dataset content consists of documents where '
                            'each document consists of newline separated sentences')
    group.add_argument('--num-workers', type=int, default=2,
                       help="""Number of workers to use for dataloading""")
    group.add_argument('--tokenizer-model-type', type=str,
                       default='bert-large-uncased',
                       help="Model type to use for sentencepiece tokenization \
                       (one of ['bpe', 'char', 'unigram', 'word']) or \
                       bert vocab to use for BertWordPieceTokenizer (one of \
                       ['bert-large-uncased', 'bert-large-cased', etc.])")
    group.add_argument('--tokenizer-path', type=str, default='tokenizer.model',
                       help='path used to save/load sentencepiece tokenization '
                            'models')
    group.add_argument('--tokenizer-type', type=str,
                       default='BertWordPieceTokenizer',
                       choices=['CharacterLevelTokenizer',
                                'SentencePieceTokenizer',
                                'BertWordPieceTokenizer',
                                'GPT2BPETokenizer',
                                'ChineseSPTokenizer'],
                       help='what type of tokenizer to use')
    group.add_argument('--not-pre-tokenize', action='store_true')
    group.add_argument("--cache-dir", default=None, type=str,
                       help="Where to store pre-trained BERT downloads")
    group.add_argument('--use-tfrecords', action='store_true',
                       help='load `--train-data`, `--valid-data`, '
                            '`--test-data` from BERT tf records instead of '
                            'normal data pipeline')
    group.add_argument('--seq-length', type=int, default=512,
                       help="Maximum sequence length to process")
    group.add_argument('--mem-length', type=int, default=0,
                       help="The memory length to preserve")
    group.add_argument('--max-preds-per-seq', type=int, default=None,
                       help='Maximum number of predictions to use per sequence.'
                            'Defaults to math.ceil(`--seq-length`*.15/10)*10.'
                            'MUST BE SPECIFIED IF `--use-tfrecords` is True.')
    group.add_argument('--sample-one-document', action='store_true', help='only sample one document in one sample')

    return parser

def add_prefix_tuning_args(parser):
    """prefix-tuning arguments."""
    group = parser.add_argument_group('prefix-tuning', 'prefix tuning configurations')

    group.add_argument('--save_dir', type=str, default="",
                       help='directory for model checkpoint saving')
    group.add_argument('--preseqlen', type=int, default=100,
                       help="prefix sequence length")
    group.add_argument('--load_sd', type=str, default="",
                       help="path to load state dict of model")
    group.add_argument('--no_load_lr_scheduler', action='store_true', help='do not load lr scheduler when loading checkpoint')
    group.add_argument('--no_load_optim', action='store_true', help='do not load optimizer when loading checkpoint')
    group.add_argument('--batch_size', type=int, help='batch size')
    group.add_argument("--MASTER_PORT", type=str)

    return parser


def get_args():
    """Parse all the args."""

    parser = argparse.ArgumentParser(description='PyTorch BERT Model')
    parser = add_model_config_args(parser)
    parser = add_fp16_config_args(parser)
    parser = add_training_args(parser)
    parser = add_evaluation_args(parser)
    parser = add_text_generate_args(parser)
    parser = add_data_args(parser)
    parser = add_prefix_tuning_args(parser)

    # Include DeepSpeed configuration arguments
    try:
        import deepspeed
        parser = deepspeed.add_config_arguments(parser)
    except ModuleNotFoundError:
        pass

    args = parser.parse_args()
    if not args.train_data and not args.train_data_path:
        print('WARNING: No training data specified')

    args.cuda = torch.cuda.is_available()

    args.rank = int(os.getenv('RANK', '0'))
    args.world_size = int(os.getenv("WORLD_SIZE", '1'))
    if hasattr(args, 'deepspeed_mpi') and args.deepspeed_mpi:
        mpi_define_env(args)
    elif os.getenv('OMPI_COMM_WORLD_LOCAL_RANK'):
        # We are using (OpenMPI) mpirun for launching distributed data parallel processes
        local_rank = int(os.getenv('OMPI_COMM_WORLD_LOCAL_RANK'))
        local_size = int(os.getenv('OMPI_COMM_WORLD_LOCAL_SIZE'))

        # Possibly running with Slurm
        num_nodes = int(os.getenv('SLURM_JOB_NUM_NODES', '1'))
        nodeid = int(os.getenv('SLURM_NODEID', '0'))

        args.local_rank = local_rank
        args.rank = nodeid * local_size + local_rank
        args.world_size = num_nodes * local_size

    args.model_parallel_size = min(args.model_parallel_size, args.world_size)
    if args.rank == 0:
        print('using world size: {} and model-parallel size: {} '.format(
            args.world_size, args.model_parallel_size))

    args.dynamic_loss_scale = False
    if args.loss_scale is None:
        args.dynamic_loss_scale = True
        if args.rank == 0:
            print(' > using dynamic loss scaling')

    # The args fp32_* or fp16_* meant to be active when the
    # args fp16 is set. So the default behaviour should all
    # be false.
    if not args.fp16:
        args.fp32_embedding = False
        args.fp32_tokentypes = False
        args.fp32_layernorm = False

    if hasattr(args, "deepspeed") and args.deepspeed and args.deepspeed_config is not None:
        with open(args.deepspeed_config) as file:
            deepspeed_config = json.load(file)
        if "train_micro_batch_size_per_gpu" in deepspeed_config:
            args.batch_size = deepspeed_config["train_micro_batch_size_per_gpu"]
        if "gradient_accumulation_steps" in deepspeed_config:
            args.gradient_accumulation_steps = deepspeed_config["gradient_accumulation_steps"]
        else:
            args.gradient_accumulation_steps = None
        if "optimizer" in deepspeed_config:
            optimizer_params_config = deepspeed_config["optimizer"].get("params", {})
            args.lr = optimizer_params_config.get("lr", args.lr)
            args.weight_decay = optimizer_params_config.get("weight_decay", args.weight_decay)
    return args


def mpi_define_env(args):
    from mpi4py import MPI
    import subprocess
    comm = MPI.COMM_WORLD
    rank = comm.Get_rank()
    world_size = comm.Get_size()

    master_addr = None
    if rank == 0:
        hostname_cmd = ["hostname -I"]
        result = subprocess.check_output(hostname_cmd, shell=True)
        master_addr = result.decode('utf-8').split()[0]
    master_addr = comm.bcast(master_addr, root=0)

    # Determine local rank by assuming hostnames are unique
    proc_name = MPI.Get_processor_name()
    all_procs = comm.allgather(proc_name)
    local_rank = sum([i == proc_name for i in all_procs[:rank]])

    os.environ['RANK'] = str(rank)
    os.environ['WORLD_SIZE'] = str(world_size)
    args.local_rank = local_rank
    args.world_size = world_size
    args.rank = rank
    os.environ['MASTER_ADDR'] = master_addr
    print(f"args master port : {args.MASTER_PORT}")
    os.environ['MASTER_PORT'] = args.MASTER_PORT # TORCH_DISTRIBUTED_DEFAULT_PORT = 29500

    print(
        "Discovered MPI settings of world_rank={}, local_rank={}, world_size={}, master_addr={}, master_port={}"
        .format(os.environ['RANK'],
                args.local_rank,
                os.environ['WORLD_SIZE'],
                os.environ['MASTER_ADDR'],
                os.environ['MASTER_PORT']))