diff --git a/README.md b/README.md index a26a9a3..6783d5a 100644 --- a/README.md +++ b/README.md @@ -62,16 +62,15 @@ | 9月5日 (周六) 5:00PM | (直播-Discussion) <br> 项目三讲解 ||[课件]参考课程讲解视频及项目文件内容||| | 9月5日 (周六) 8:00PM | (直播-Paper) <br>K-BERT: Enabling Language Representation with Knowledge Graph ||[课件](http://47.94.6.102/NLP7/course-info/blob/master/%E8%AF%BE%E4%BB%B6/0905K-BERT%20Enabling%20Language%20Representation%20with%20Knowledge%20Graph.pptx)|[K-BERT: Enabling Language Representation with Knowledge Graph](https://arxiv.org/abs/1909.07606)||| | 9月6日 (周日) 8:00PM | (直播-Discussion) <br> 句法分析(Parsing)和CKY算法 ||[课件](http://47.94.6.102/NLP7/course-info/blob/master/%E8%AF%BE%E4%BB%B6/0906%E5%8F%A5%E6%B3%95%E5%88%86%E6%9E%90%E5%92%8CCKY%E7%AE%97%E6%B3%95.zip)||| -| TBD | (直播-Lecture16) <br> 知识图谱 |知识图的概念,搭建,应用场景|||[project5](http://47.94.6.102/NLP7/course-info/blob/master/%E8%AF%BE%E4%BB%B6/%E7%9F%A5%E8%AF%86%E5%9B%BE%E8%B0%B1%E9%A1%B9%E7%9B%AE.zip)截止日期:9月20日(周日)<br>北京时间 23:59PM, <br>上传到gitlab| -| TBD | (直播-Discussion) <br> 知识图谱在推荐系统中的应用 ||||| -| TBD | (直播-Lecture17) <br> 图神经网络 |图卷积神经网络,GraphSage, GAT|||| -| TBD | (直播-Discussion) <br> 项目四讲解 ||||| +| 9月13日 (周日) 10:30AM | (直播-Lecture16) <br> 知识图谱 |知识图的概念,搭建,应用场景||||[project5](http://47.94.6.102/NLP7/course-info/blob/master/%E8%AF%BE%E4%BB%B6/%E7%9F%A5%E8%AF%86%E5%9B%BE%E8%B0%B1%E9%A1%B9%E7%9B%AE.zip)截止日期:9月20日(周日)<br>北京时间 23:59PM, <br>上传到gitlab| +| 9月13日 (周日) 8:00PM | (直播-Discussion) <br> 知识图谱在推荐系统中的应用 ||||| +| 9月19日 (周六) 10:30AM | (直播-Lecture17) <br> 图神经网络 |图卷积神经网络,GraphSage, GAT|||| +| TBD | (直播-Discussion) <br> 项目四讲解 ||||| +| TBD | (直播-Discussion) <br> 项目五讲解 ||||| | PART 4 概率图模型| -| TBD | (直播-Lecture18) <br> 概率图模型-1 |贝叶斯推理,LDA模型|||| +| 9月26日 (周六) 10:30AM | (直播-Lecture18) <br> 概率图模型-1 |贝叶斯推理,LDA模型|||| +| 10月11日 (周日) 10:30AM | (直播-Lecture19) <br> 概率图模型-2 |吉布斯采样、变分法|||| +| 10月11日 (周日) 8:30PM | (直播-Lecture20) <br> 概率图模型-3 ||||| | TBD | (直播-Discussion) <br> MCMC之Metroplis Hasting算法 ||||| | TBD | (直播-Discussion) <br> Bayesian Neural Network ||||| -| TBD | (直播-Paper) <br> |||[Dropout as a Bayesian Approximation:Representing Model Uncertainty in Deep Learning](https://arxiv.org/pdf/1506.02142.pdf)|| -| TBD | (直播-Lecture19) <br> 概率图模型-2 |吉布斯采样、变分法|||| -| TBD | (直播-Lecture20) <br> 概率图模型-3 ||||| -| TBD | (直播-Discussion) <br> 项目五讲解 ||||| - +| TBD | (直播-Paper) <br> |||[Dropout as a Bayesian Approximation:Representing Model Uncertainty in Deep Learning](https://arxiv.org/pdf/1506.02142.pdf)||