mlp.py 8.06 KB
Newer Older
20200318029 committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
import numpy as np
import pandas as pd
import os
import torch
import argparse
import heapq
import pdb

from tqdm import tqdm,trange
from time import time
from scipy.sparse import load_npz
from torch import nn
from torch.optim.lr_scheduler import CyclicLR
from torch.utils.data import DataLoader, Dataset
from utils import get_train_instances, get_scores
from gmf import train, evaluate, checkpoint

20200318029 committed
18
os.environ["CUDA_VISIBLE_DEVICES"] = '0'  # assign GPU
20200318029 committed
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83

def parse_args():

    parser = argparse.ArgumentParser()

    parser.add_argument("--datadir", type=str, default=".",
        help="data directory.")
    parser.add_argument("--modeldir", type=str, default="./models",
        help="models directory")
    parser.add_argument("--dataname", type=str, default="neuralcf_split.npz",
        help="npz file with dataset")
    parser.add_argument("--train_matrix", type=str, default="neuralcf_train_sparse.npz",
        help="train matrix for faster iteration")
    parser.add_argument("--epochs", type=int, default=20,
        help="number of epochs.")
    parser.add_argument("--batch_size", type=int, default=1024,
        help="batch size.")
    parser.add_argument("--layers", type=str, default="[64,32,16,8]",
        help="layer architecture. The first elements is used for the embedding \
        layers and equals n_emb*2")
    parser.add_argument("--dropouts", type=str, default="[0,0,0]",
        help="dropout per dense layer. len(dropouts) = len(layers)-1")
    parser.add_argument("--l2reg", type=float, default=0.,
        help="l2 regularization")
    parser.add_argument("--lr", type=float, default=0.01,
        help="if lr_scheduler this will be max_lr")
    parser.add_argument("--learner", type=str, default="adam",
        help="Specify an optimizer: adagrad, adam, rmsprop, sgd")
    parser.add_argument("--lr_scheduler", action="store_true",
        help="use CyclicLR during training")
    parser.add_argument("--validate_every", type=int, default=1,
        help="validate every n epochs")
    parser.add_argument("--save_model", type=int, default=1)
    parser.add_argument("--n_neg", type=int, default=4,
        help="number of negative instances to consider per positive instance.")
    parser.add_argument("--topk", type=int, default=10,
        help="number of items to retrieve for recommendation.")

    return parser.parse_args()


class MLP(nn.Module):
    """
    Concatenate Embeddings that are then passed through a series of Dense  layers
    """
    def __init__(self, n_user, n_item, layers, dropouts):
        super(MLP, self).__init__()

        self.layers = layers
        self.n_layers = len(layers)
        self.dropouts = dropouts
        self.n_user = n_user
        self.n_item = n_item

        self.embeddings_user = nn.Embedding(n_user, int(layers[0]/2))
        self.embeddings_item = nn.Embedding(n_item, int(layers[0]/2))

        self.mlp = nn.Sequential()
        for i in range(1,self.n_layers):
            self.mlp.add_module("linear%d" %i, nn.Linear(layers[i-1],layers[i]))
            self.mlp.add_module("relu%d" %i, torch.nn.ReLU())
            self.mlp.add_module("dropout%d" %i , torch.nn.Dropout(p=dropouts[i-1]))

        # Task-2: replace '?' with two proper numbers in below code
        # self.out = nn.Linear(in_features='?', out_features='?')
20200318029 committed
84
        self.out = nn.Linear(in_features=layers[-1], out_features=1)
20200318029 committed
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211

        for m in self.modules():
            if isinstance(m, nn.Embedding):
                nn.init.normal_(m.weight)

    def forward(self, users, items):

        user_emb = self.embeddings_user(users)
        item_emb = self.embeddings_item(items)
        emb_vector = torch.cat([user_emb,item_emb], dim=1)
        emb_vector = self.mlp(emb_vector)
        preds = torch.sigmoid(self.out(emb_vector))

        return preds


if __name__ == '__main__':

    args = parse_args()

    datadir = args.datadir
    dataname = args.dataname
    train_matrix = args.train_matrix
    modeldir = args.modeldir
    layers = eval(args.layers)
    ll = str(layers[-1]) #last layer
    dropouts = eval(args.dropouts)
    dp = "wdp" if dropouts[0]!=0 else "wodp"
    l2reg = args.l2reg
    n_emb = int(layers[0]/2)
    batch_size = args.batch_size
    epochs = args.epochs
    learner = args.learner
    lr = args.lr
    lr_scheduler = args.lr_scheduler
    lrs = "wlrs" if lr_scheduler else "wolrs"
    validate_every = args.validate_every
    save_model = args.save_model
    topk = args.topk
    n_neg = args.n_neg

    modelfname = "MLP" + \
        "_".join(["_bs", str(batch_size)]) + \
        "_".join(["_reg", str(l2reg).replace(".", "")]) + \
        "_".join(["_lr", str(lr).replace(".", "")]) + \
        "_".join(["_n_emb", str(n_emb)]) + \
        "_".join(["_ll", ll]) + \
        "_".join(["_dp", dp]) + \
        "_".join(["_lrnr", learner]) + \
        "_".join(["_lrs", lrs]) + \
        ".pt"
    modelpath = os.path.join(modeldir, modelfname)
    resultsdfpath = os.path.join(modeldir, 'results_df.p')

    dataset = np.load(os.path.join(datadir, dataname))
    train_ratings = load_npz(os.path.join(datadir, train_matrix)).todok()
    test_ratings, negatives = dataset['test_negative'], dataset['negatives']
    n_users, n_items = dataset['n_users'].item(), dataset['n_items'].item()

    test_loader = DataLoader(dataset=test_ratings,
        batch_size=1000,
        shuffle=False
        )

    model = MLP(n_users, n_items, layers, dropouts)

    if learner.lower() == "adagrad":
        optimizer = torch.optim.Adagrad(model.parameters(), lr=lr, weight_decay=l2reg)
    elif learner.lower() == "rmsprop":
        optimizer = torch.optim.RMSprop(model.parameters(), lr=lr, weight_decay=l2reg,
            momentum=0.9)
    elif learner.lower() == "adam":
        optimizer = torch.optim.Adam(model.parameters(), lr=lr, weight_decay=l2reg)
    else:
        optimizer = torch.optim.SGD(model.parameters(), lr=lr, weight_decay=l2reg,
            momentum=0.9, nesterov=True)

    criterion = nn.BCELoss()

    training_steps = ((len(train_ratings)+len(train_ratings)*n_neg)//batch_size)+1
    step_size = training_steps*3 #one cycle every 6 epochs
    cycle_momentum=True
    if learner.lower() == "adagrad" or learner.lower()=="adam":
        cycle_momentum=False
    if lr_scheduler:
        scheduler = CyclicLR(optimizer, step_size_up=step_size, base_lr=lr/10., max_lr=lr,
            cycle_momentum=cycle_momentum)
    else:
        scheduler = None

    use_cuda = torch.cuda.is_available()
    if use_cuda:
        model = model.cuda()

    best_hr, best_ndcgm, best_iter=0,0,0
    for epoch in range(1,epochs+1):
        t1 = time()
        loss = train(model, criterion, optimizer, scheduler, epoch, batch_size,
            use_cuda, train_ratings, negatives, n_items, n_neg)
        t2 = time()
        if epoch % validate_every == 0:
            (hr, ndcg) = evaluate(model, test_loader, use_cuda, topk)
            print("Epoch: {} {:.2f}s, LOSS = {:.4f}, HR = {:.4f}, NDCG = {:.4f}, validated in {:.2f}s".
                format(epoch, t2-t1, loss, hr, ndcg, time()-t2))
            if hr > best_hr:
                iter_loss, best_hr, best_ndcg, best_iter, train_time = \
                    loss, hr, ndcg, epoch, t2-t1
                if save_model:
                    checkpoint(model, modelpath)

    print("End. Best Iteration {}: HR = {:.4f}, NDCG = {:.4f}. ".format(best_iter, best_hr, best_ndcg))
    if save_model:
        print("The best MLP model is saved to {}".format(modelpath))

    if save_model:
        cols = ["modelname", "iter_loss","best_hr", "best_ndcg", "best_iter","train_time"]
        vals = [modelfname, iter_loss, best_hr, best_ndcg, best_iter, train_time]
        if not os.path.isfile(resultsdfpath):
            results_df = pd.DataFrame(columns=cols)
            experiment_df = pd.DataFrame(data=[vals], columns=cols)
            results_df = results_df.append(experiment_df, ignore_index=True)
            results_df.to_pickle(resultsdfpath)
        else:
            results_df = pd.read_pickle(resultsdfpath)
            experiment_df = pd.DataFrame(data=[vals], columns=cols)
            results_df = results_df.append(experiment_df, ignore_index=True)
            results_df.to_pickle(resultsdfpath)