face.rec.klda.homework.py 8.27 KB
Newer Older
20200318029 committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
"""
==============================================================
基于 Kernel LDA + KNN 的人脸识别
使用 Kernel Discriminant Analysis 做特征降维
使用 K-Nearest-Neighbor 做分类

数据:
    人脸图像来自于 Olivetti faces data-set from AT&T (classification)
    数据集包含 40 个人的人脸图像, 每个人都有 10 张图像
    我们只使用其中标签(label/target)为 0 和 1 的前 2 个人的图像

算法:
    需要自己实现基于 RBF Kernel 的 Kernel Discriminant Analysis 用于处理两个类别的数据的特征降维
    代码的框架已经给出, 需要学生自己补充 KernelDiscriminantAnalysis 的 fit() 和 transform() 函数的内容
==============================================================
"""

# License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.datasets import fetch_olivetti_faces
from sklearn.neighbors import KNeighborsClassifier
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler

print(__doc__)
################################################
"""
Scikit-learn-compatible Kernel Discriminant Analysis.
"""

import numpy as np
from scipy import linalg
from sklearn.base import BaseEstimator, ClassifierMixin, TransformerMixin
from sklearn.preprocessing import OneHotEncoder
from sklearn.utils.validation import check_array, check_is_fitted, check_X_y

class RBFKernel(object):
    """
    a gaussian kernel

    k(x, y) = exp( - gamma * || x - y ||^2)
    """
    def __init__(self, gamma: float) -> None:
        self._gamma = gamma

    @property
    def gamma(self) -> float:
        return self._gamma
    @gamma.setter
    def gamma(self, gamma: float) -> None:
        self._gamma = gamma

    def _rbf(self, x: np.array, y: np.array) -> float:
        return np.exp(- self._gamma * np.sum((x - y) ** 2))

    def __call__(self, x: np.array, y: np.array) -> float:
        return self._rbf(x, y)


class KernelDiscriminantAnalysis(BaseEstimator, ClassifierMixin,
                                 TransformerMixin):
    """Kernel Discriminant Analysis.

    Parameters
    ----------
    n_components: integer.
                  The dimension after transform.
    gamma: float.
           Parameter to RBF Kernel
    lmb: float (>= 0.0), default=0.001.
         Regularization parameter
    """

    def __init__(self, n_components, gamma, lmb=0.001):
        self.n_components = n_components
        self.gamma = gamma
        self.lmb = lmb
        self.X = None # 用于存放输入的训练数据的 X
        self.K = None # 用于存放训练数据 X 产生的 Kernel Matrix
        self.M = None # 用于存放 Kernel LDA 最优化公式中的 M
        self.N = None # 用于存放 Kernel LDA 最优化公式中的 N
        self.EigenVectors = None # 用于存放 Kernel LDA 最优化公式中的 M 对应的广义特征向量, 每一列为一个特征向量, 按照对应特征值大小排序

        self._rbf = RBFKernel(gamma)

    def fit(self, X: np.array, y: np.array) -> None:
        """Fit KDA model.

        Parameters
        ----------
        X: numpy array of shape [n_samples, n_features]
           Training set.
        y: numpy array of shape [n_samples]
           Target values. Only works for 2 classes with label/target 0 and 1.

        Returns
        -------
        self
        """
        self.X = X
        classes = list(set(y))
        assert len(classes) == 2, "only works for 2 classes"

        X_cls_1 = X[y == classes[0], :]
        X_cls_2 = X[y == classes[1], :]

        # M, M_1 & M_2
        M_1 = self._M_cls(X, X_cls_1)
        M_2 = self._M_cls(X, X_cls_2)
        self.M = np.matmul((M_2 - M_1), np.transpose(M_2 - M_1))

        # N, K_1 & K_2
        num_samples = X.shape[0]
        num_samples_cls_1 = X_cls_1.shape[0]
        num_samples_cls_2 = X_cls_2.shape[0]
        K_1 = self._K_cls(X, X_cls_1)
        K_2 = self._K_cls(X, X_cls_2)
        self.N = np.matmul(
            np.matmul(
                K_1,
                (np.identity(num_samples_cls_1) - 1 / num_samples_cls_1 * np.ones(shape=(num_samples_cls_1, num_samples_cls_1)))
            ),
            np.transpose(K_1)
        )
        self.N += np.matmul(
            np.matmul(
                K_2,
                (np.identity(num_samples_cls_2) - 1 / num_samples_cls_2 * np.ones(shape=(num_samples_cls_2, num_samples_cls_2)))
            ),
            np.transpose(K_2)
        )
        self.N += self.lmb + np.identity(num_samples)
        self.K = [K_1, K_2]

        _, vecs = linalg.eig(self.M, self.N)
        self.EigenVectors = vecs[:, : self.n_components]

    def transform(self, X_test: np.array) -> np.array:
        """Transform data with the trained KernelLDA model.

        Parameters
        ----------
        X_test: numpy array of shape [n_samples, n_features]
                The input data.

        Returns
        -------
        y_pred: array-like, shape (n_samples, n_components)
                Transformations for X.
        """
        num_samples_test = X_test.shape[0]
        num_samples = self.X.shape[0]

        y_pred = np.zeros(shape=(num_samples_test, self.n_components))

        for i in range(num_samples_test):
            # kernel
            x = X_test[i, :]
            x_rbf = np.zeros(shape=(num_samples, ))
            for k in range(num_samples):
                x_rbf[k] = self._rbf(self.X[k, :], x)

            y_pred[i, :] = np.matmul(x_rbf, self.EigenVectors)

        return y_pred

    def _M_cls(self, X: np.array, X_cls: np.array) -> np.array:
        """
        """
        num_samples = X.shape[0]
        num_samples_cls = X_cls.shape[0]

        # M_cls
        M_cls = np.zeros(shape=(num_samples, 1))
        for j in range(num_samples):

            for k in range(num_samples_cls):
                M_cls[j] += self._rbf(X[j, :], X_cls[k, :])
        M_cls /= num_samples_cls

        return M_cls

    def _K_cls(self, X: np.array, X_cls: np.array) -> np.array:

        num_samples = X.shape[0]
        num_samples_cls = X_cls.shape[0]

        K_cls = np.zeros(shape=(num_samples, num_samples_cls))

        for n in range(num_samples):
            for m in range(num_samples_cls):
                K_cls[n, m] = self._rbf(X[n, :], X_cls[m, :])

        return K_cls


################################################

# 指定 KNN 中最近邻的个数 (k 的值)
n_neighbors = 3

# 设置随机数种子让实验可以复现
random_state = 0

# 现在人脸数据集
faces = fetch_olivetti_faces(download_if_missing=False)
targets = faces.target

# show sample images
images = faces.images[targets < 2] # save images

features = faces.data  # features
targets = faces.target # targets

fig = plt.figure() # create a new figure window
for i in range(20): # display 20 images
    # subplot : 4 rows and 5 columns
    img_grid = fig.add_subplot(4, 5, i+1)
    # plot features as image
    img_grid.imshow(images[i], cmap='gray')

plt.show()

# Prepare data, 只限于处理类别 0 和 1 的人脸
X, y = faces.data[targets < 2], faces.target[targets < 2]

# Split into train/test
X_train, X_test, y_train, y_test = \
    train_test_split(X, y, test_size=0.5, stratify=y,
                     random_state=random_state)


# Reduce dimension to 2 with KernelDiscriminantAnalysis
# can adjust the value of 'gamma' as needed.
kda = make_pipeline(StandardScaler(),
                    KernelDiscriminantAnalysis(n_components=2, gamma = 0.000005))

# Use a nearest neighbor classifier to evaluate the methods
knn = KNeighborsClassifier(n_neighbors=n_neighbors)



# Fit the method's model
kda.fit(X_train, y_train)

# Fit a nearest neighbor classifier on the embedded training set
knn.fit(kda.transform(X_train), y_train)

# Compute the nearest neighbor accuracy on the embedded test set
acc_knn = knn.score(kda.transform(X_test), y_test)

# Embed the data set in 2 dimensions using the fitted model
X_embedded = kda.transform(X)

plt.figure()
# plt.subplot(1, 3, i + 1, aspect=1)
# Plot the projected points and show the evaluation score
plt.scatter(X_embedded[:, 0], X_embedded[:, 1], c=y, s=30, cmap='Set1')
plt.title("{}, KNN (k={})\nTest accuracy = {:.2f}".format('kda',
                                                              n_neighbors,
                                                              acc_knn))
plt.show()