gmf.py 8.71 KB
Newer Older
20200318029 committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
import numpy as np
import pandas as pd
import os
import torch
import argparse
import heapq
import pdb

from tqdm import tqdm,trange
from time import time
from scipy.sparse import load_npz
from torch import nn
from torch.optim.lr_scheduler import CyclicLR
from torch.utils.data import DataLoader, Dataset
from utils import get_train_instances, get_scores

os.environ["CUDA_VISIBLE_DEVICES"] = '0'  # assign GPU

def parse_args():

    parser = argparse.ArgumentParser()

    parser.add_argument("--datadir", type=str, default=".",
        help="data directory.")
    parser.add_argument("--modeldir", type=str, default="./models",
        help="models directory")
    parser.add_argument("--dataname", type=str, default="neuralcf_split.npz",
        help="npz file with dataset")
    parser.add_argument("--train_matrix", type=str, default="neuralcf_train_sparse.npz",
        help="train matrix for faster iteration")
    parser.add_argument("--epochs", type=int, default=20,
        help="number of epochs.")
    parser.add_argument("--batch_size", type=int, default=1024,
        help="batch size.")
    parser.add_argument("--n_emb", type=int, default=8,
        help="embedding size.")
    parser.add_argument("--lr", type=float, default=0.01,
        help="if lr_scheduler this will be max_lr")
    parser.add_argument("--learner", type=str, default="adam",
        help="Specify an optimizer: adagrad, adam, rmsprop, sgd")
    parser.add_argument("--lr_scheduler", action="store_true",
        help="boolean to set the use of CyclicLR during training")
    parser.add_argument("--validate_every", type=int, default=1,
        help="validate every n epochs")
    parser.add_argument("--save_model", type=int, default=1)
    parser.add_argument("--n_neg", type=int, default=4,
        help="number of negative instances to consider per positive instance")
    parser.add_argument("--topk", type=int, default=10,
        help="number of items to retrieve for recommendation")

    return parser.parse_args()


class GMF(nn.Module):
    def __init__(self, n_user, n_item, n_emb=8):
        super(GMF, self).__init__()

        self.n_emb = n_emb
        self.n_user = n_user
        self.n_item = n_item

        self.embeddings_user = nn.Embedding(n_user, n_emb)
        self.embeddings_item = nn.Embedding(n_item, n_emb)
        self.out = nn.Linear(in_features=n_emb, out_features=1)

        for m in self.modules():
            if isinstance(m, nn.Embedding):
                nn.init.normal_(m.weight)
            elif isinstance(m, nn.Linear):
                nn.init.uniform_(m.weight)

    def forward(self, users, items):

        user_emb = self.embeddings_user(users)
        item_emb = self.embeddings_item(items)

        # Task-1: complete the proces to compute preds
        # preds = '...'
20200318029 committed
79 80
        preds = self.out(user_emb * item_emb)
        preds = torch.sigmoid(preds)
20200318029 committed
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242

        return preds


def train(model, criterion, optimizer, scheduler, epoch, batch_size,
    use_cuda, train_ratings, negatives, n_items, n_neg):
    model.train()
    train_dataset = get_train_instances(train_ratings,
        negatives,
        n_items,
        n_neg)
    train_loader = DataLoader(dataset=train_dataset,
        batch_size=batch_size,
        num_workers=4,
        shuffle=True)
    train_steps = (len(train_loader.dataset) // train_loader.batch_size) + 1
    running_loss=0
    for data in train_loader:
        users = data[:,0]
        items = data[:,1]
        labels = data[:,2].float()
        if use_cuda:
            users, items, labels = users.cuda(), items.cuda(), labels.cuda()
        optimizer.zero_grad()
        preds =  model(users, items)
        if scheduler:
            scheduler.step()
        loss = criterion(preds.squeeze(1), labels)
        loss.backward()
        optimizer.step()
        running_loss += loss.item()
    return running_loss/train_steps


def evaluate(model, test_loader, use_cuda, topk):
    model.eval()
    scores=[]
    with torch.no_grad():
        for data in test_loader:
            users = data[:,0]
            items = data[:,1]
            labels = data[:,2].float()
            if use_cuda:
                users, items, labels = users.cuda(), items.cuda(), labels.cuda()
            preds = model(users, items)
            items_cpu = items.cpu().numpy()
            preds_cpu = preds.squeeze(1).detach().cpu().numpy()
            split_chuncks = preds_cpu.shape[0]//100
            litems=np.split(items_cpu, split_chuncks)
            lpreds=np.split(preds_cpu, split_chuncks)
            scores += [get_scores(it,pr,topk) for it,pr in zip(litems,lpreds)]
    hits = [s[0] for s in scores]
    ndcgs = [s[1] for s in scores]
    return (np.array(hits).mean(),np.array(ndcgs).mean())


def checkpoint(model, modelpath):
    torch.save(model.state_dict(), modelpath)


if __name__ == '__main__':

    args = parse_args()

    datadir = args.datadir
    dataname = args.dataname
    train_matrix = args.train_matrix
    modeldir = args.modeldir
    n_emb = args.n_emb
    batch_size = args.batch_size
    epochs = args.epochs
    learner = args.learner
    lr = args.lr
    lr_scheduler = args.lr_scheduler
    lrs = "wlrs" if lr_scheduler else "wolrs"
    validate_every = args.validate_every
    save_model = args.save_model
    topk = args.topk
    n_neg = args.n_neg

    modelfname = "GMF" + \
        "_".join(["_bs", str(batch_size)]) + \
        "_".join(["_lr", str(lr).replace(".", "")]) + \
        "_".join(["_n_emb", str(n_emb)]) + \
        "_".join(["_lrnr", learner]) + \
        "_".join(["_lrs", lrs]) + \
        ".pt"
    if not os.path.exists(modeldir): os.makedirs(modeldir)
    modelpath = os.path.join(modeldir, modelfname)
    resultsdfpath = os.path.join(modeldir, 'results_df.p')

    dataset = np.load(os.path.join(datadir, dataname))
    train_ratings = load_npz(os.path.join(datadir, train_matrix)).todok()
    test_ratings, negatives = dataset['test_negative'], dataset['negatives']
    n_users, n_items = dataset['n_users'].item(), dataset['n_items'].item()

    test_loader = DataLoader(dataset=test_ratings,
        batch_size=1000,
        shuffle=False
        )

    model = GMF(n_users, n_items, n_emb=n_emb)

    if learner.lower() == "adagrad":
        optimizer = torch.optim.Adagrad(model.parameters(), lr=lr)
    elif learner.lower() == "rmsprop":
        optimizer = torch.optim.RMSprop(model.parameters(), lr=lr, momentum=0.9)
    elif learner.lower() == "adam":
        optimizer = torch.optim.Adam(model.parameters(), lr=lr)
    else:
        optimizer = torch.optim.SGD(model.parameters(), lr=lr, momentum=0.9, nesterov=True)

    criterion = nn.BCELoss()

    training_steps = ((len(train_ratings)+len(train_ratings)*n_neg)//batch_size)+1
    step_size = training_steps*3 # one cycle every 6 epochs
    cycle_momentum=True
    if learner.lower() == "adagrad" or learner.lower()=="adam":
        cycle_momentum=False
    if lr_scheduler:
        scheduler = CyclicLR(optimizer, step_size_up=step_size, base_lr=lr/10., max_lr=lr,
            cycle_momentum=cycle_momentum)
    else:
        scheduler = None

    use_cuda = torch.cuda.is_available()
    if use_cuda:
        model = model.cuda()

    best_hr, best_ndcgm, best_iter=0,0,0
    for epoch in range(1,epochs+1):
        t1 = time()
        loss = train(model, criterion, optimizer, scheduler, epoch, batch_size,
            use_cuda, train_ratings, negatives, n_items, n_neg)
        t2 = time()
        if epoch % validate_every == 0:
            (hr, ndcg) = evaluate(model, test_loader, use_cuda, topk)
            print("Epoch: {} {:.2f}s, LOSS = {:.4f}, HR = {:.4f}, NDCG = {:.4f}, validated in {:.2f}s".
                format(epoch, t2-t1, loss, hr, ndcg, time()-t2))
            if hr > best_hr:
                iter_loss, best_hr, best_ndcg, best_iter, train_time = \
                    loss, hr, ndcg, epoch, t2-t1
                if save_model:
                    checkpoint(model, modelpath)

    print("End. Best Iteration {}: HR = {:.4f}, NDCG = {:.4f}. ".format(best_iter, best_hr, best_ndcg))
    if save_model:
        print("The best GMF model is saved to {}".format(modelpath))

    if save_model:
        cols = ["modelname", "iter_loss","best_hr", "best_ndcg", "best_iter","train_time"]
        vals = [modelfname, iter_loss, best_hr, best_ndcg, best_iter, train_time]
        if not os.path.isfile(resultsdfpath):
            results_df = pd.DataFrame(columns=cols)
            experiment_df = pd.DataFrame(data=[vals], columns=cols)
            results_df = results_df.append(experiment_df, ignore_index=True)
            results_df.to_pickle(resultsdfpath)
        else:
            results_df = pd.read_pickle(resultsdfpath)
            experiment_df = pd.DataFrame(data=[vals], columns=cols)
            results_df = results_df.append(experiment_df, ignore_index=True)
            results_df.to_pickle(resultsdfpath)