gmf_wo_negative.py 5.88 KB
Newer Older
20200318029 committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
import numpy as np
import pandas as pd
import os
import torch
import argparse
import heapq
import pdb

from tqdm import tqdm,trange
from time import time
from scipy.sparse import load_npz
from torch import nn
from torch.utils.data import DataLoader, Dataset
from sklearn.model_selection import train_test_split
from utils import get_train_instances, get_scores


def parse_args():
    parser = argparse.ArgumentParser()

    parser.add_argument("--datadir", type=str, default=".",
        help="data directory.")
    parser.add_argument("--modeldir", type=str, default="./models",
        help="models directory")
    parser.add_argument("--dataname", type=str, default="standard_split.npz",
        help="npz file with dataset")
    parser.add_argument("--epochs", type=int, default=5,
        help="number of epochs.")
    parser.add_argument("--batch_size", type=int, default=256,
        help="batch size.")
    parser.add_argument("--n_emb", type=int, default=8,
        help="embedding size.")
    parser.add_argument("--lr", type=float, default=0.01,
        help="if lr_scheduler this will be max_lr")
    parser.add_argument("--learner", type=str, default="adam",
        help="Specify an optimizer: adagrad, adam, rmsprop, sgd")

    return parser.parse_args()


class GMF(nn.Module):
    def __init__(self, n_user, n_item, n_emb=8):
        super(GMF, self).__init__()

        self.n_emb = n_emb
        self.n_user = n_user
        self.n_item = n_item

        self.embeddings_user = nn.Embedding(n_user, n_emb)
        self.embeddings_item = nn.Embedding(n_item, n_emb)
        self.out = nn.Linear(in_features=n_emb, out_features=1)

        for m in self.modules():
            if isinstance(m, nn.Embedding):
                nn.init.normal_(m.weight)
            elif isinstance(m, nn.Linear):
                nn.init.uniform_(m.weight)

    def forward(self, users, items):

        user_emb = self.embeddings_user(users)
        item_emb = self.embeddings_item(items)
        prod = user_emb*item_emb
        preds = self.out(prod)

        return preds


def train(model, train_loader, criterion, optimizer, epoch):
    model.train()
    train_steps = (len(train_loader.dataset) // train_loader.batch_size) + 1
    running_loss=0
    with trange(train_steps) as t:
        for i, data in zip(t, train_loader):
            t.set_description('epoch %i' % epoch)
            users = data[:,0]
            items = data[:,1]
            labels = data[:,2].float()
            if use_cuda:
                users, items, labels = users.cuda(), items.cuda(), labels.cuda()
            optimizer.zero_grad()
            preds =  model(users, items)
            loss = criterion(preds.squeeze(1), labels)
            loss.backward()
            optimizer.step()
            running_loss += loss.item()
            avg_loss = running_loss/(i+1)
            t.set_postfix(loss=np.sqrt(avg_loss))
    return running_loss/train_steps


def valid(model, data_loader, criterion, mode='valid'):
    model.eval()
    steps = (len(data_loader.dataset) // data_loader.batch_size) + 1
    running_loss=0
    with torch.no_grad():
        with trange(steps) as t:
            for i, data in zip(t, data_loader):
                t.set_description(mode)
                users = data[:,0]
                items = data[:,1]
                labels = data[:,2].float()
                if use_cuda:
                    users, items, labels = users.cuda(), items.cuda(), labels.cuda()
                preds =  model(users, items)
                loss = criterion(preds.squeeze(1), labels)
                running_loss += loss.item()
                avg_loss = running_loss/(i+1)
                t.set_postfix(loss=np.sqrt(avg_loss))
    return running_loss/steps


def checkpoint(model, modelpath):
    torch.save(model.state_dict(), modelpath)


if __name__ == '__main__':

    args = parse_args()

    datadir = args.datadir
    dataname = args.dataname
    modeldir = args.modeldir
    n_emb = args.n_emb
    batch_size = args.batch_size
    epochs = args.epochs
    learner = args.learner
    lr = args.lr

    # I am going to perform a simple train/valid/test exercise, predicting
    # directly the ratings. I will leave it to you to adapt the datasets so
    # that we could get some ranking metrics
    dataset = np.load(os.path.join(datadir, dataname))
    train_dataset, test_dataset = dataset['train'][:, [0,1,3]], dataset['test'][:, [0,1,3]]
    train_dataset, valid_dataset = train_test_split(train_dataset, test_size=0.2, stratify=train_dataset[:,2])
    n_users, n_items = dataset['n_users'], dataset['n_items']

    train_loader = DataLoader(dataset=train_dataset,
        batch_size=batch_size,
        num_workers=4,
        shuffle=True)
    valid_loader = DataLoader(dataset=valid_dataset,
        batch_size=batch_size,
        num_workers=4,
        shuffle=True)
    test_loader = DataLoader(dataset=test_dataset,
        batch_size=batch_size,
        shuffle=False
        )

    model = GMF(n_users, n_items, n_emb=n_emb)

    if learner.lower() == "adagrad":
        optimizer = torch.optim.Adagrad(model.parameters(), lr=lr)
    elif learner.lower() == "rmsprop":
        optimizer = torch.optim.RMSprop(model.parameters(), lr=lr, momentum=0.9)
    elif learner.lower() == "adam":
        optimizer = torch.optim.Adam(model.parameters(), lr=lr)
    else:
        optimizer = torch.optim.SGD(model.parameters(), lr=lr, momentum=0.9, nesterov=True)

    criterion = nn.MSELoss()

    use_cuda = torch.cuda.is_available()
    if use_cuda:
        model = model.cuda()

    # There are better ways of structuring the code, but since I already had
    # it from the other experiments I will run it like this:
    for epoch in range(1,epochs+1):
        tr_loss  = train(model, train_loader, criterion, optimizer, epoch)
        val_loss = valid(model, valid_loader, criterion, mode='valid')
    test_loss = valid(model, test_loader, criterion, mode='test')
    print("test loss: {}".format(np.sqrt(test_loss)))