cj18 17.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178



6.4/cd-hl ./.-hl
The/at-hl primary/jj-hl decomposition/nn-hl theorem/nn-hl 
We/ppss are/ber trying/vbg to/to study/vb a/at linear/jj operator/nn T/nn on/in the/at finite-dimensional/jj space/nn V/nn ,/, by/in decomposing/vbg T/nn into/in a/at direct/jj sum/nn of/in operators/nns which/wdt are/ber in/in some/dti sense/nn elementary/jj ./.
We/ppss can/md do/do this/dt through/in the/at characteristic/jj values/nns and/cc vectors/nns of/in T/nn in/in certain/ap special/jj cases/nns ,/, i.e./rb ,/, when/wrb the/at minimal/jj polynomial/nn for/in T/nn factors/nns over/in the/at scalar/jj field/nn F/nn into/in a/at product/nn of/in distinct/jj monic/jj polynomials/nns of/in degree/nn 1/cd ./.
What/wdt can/md we/ppss do/do with/in the/at general/jj T/nn ?/. ?/.
If/cs we/ppss try/vb to/to study/vb T/nn using/vbg characteristic/jj values/nns ,/, we/ppss are/ber confronted/vbn with/in two/cd problems/nns ./.
First/od ,/, T/nn may/md not/* have/hv a/at single/ap characteristic/jj value/nn ;/. ;/.
this/dt is/bez really/rb a/at deficiency/nn in/in the/at scalar/jj field/nn ,/, namely/rb ,/, that/cs it/pps is/bez not/* algebraically/rb closed/vbn ./.
Second/od ,/, even/rb if/cs the/at characteristic/jj polynomial/nn factors/vbz completely/rb over/in F/nn into/in a/at product/nn of/in polynomials/nns of/in degree/nn 1/cd ,/, there/ex may/md not/* be/be enough/ap characteristic/jj vectors/nns for/in T/nn to/to span/vb the/at space/nn V/nn ./.
This/dt is/bez clearly/rb a/at deficiency/nn in/in T/nn ./.
The/at second/od situation/nn is/bez illustrated/vbn by/in the/at operator/nn T/nn on/in Af/nn (/( F/nn any/dti field/nn )/) represented/vbn in/in the/at standard/jj basis/nn by/in Af/nn ./.
The/at characteristic/jj polynomial/nn for/in A/nn is/bez Af/nn and/cc this/dt is/bez plainly/rb also/rb the/at minimal/jj polynomial/nn for/in A/nn (/( or/cc for/in T/nn )/) ./.
Thus/rb T/nn is/bez not/* diagonalizable/jj ./.
One/pn sees/vbz that/cs this/dt happens/vbz because/cs the/at null/jj space/nn of/in Af/nn has/hvz dimension/nn 1/cd only/rb ./.
On/in the/at other/ap hand/nn ,/, the/at null/jj space/nn of/in Af/nn and/cc the/at null/jj space/nn of/in Af/nn together/rb span/vb V/nn ,/, the/at former/ap being/beg the/at subspace/nn spanned/vbn by/in Af/nn and/cc the/at latter/ap the/at subspace/nn spanned/vbn by/in Af/nn and/cc Af/nn ./.


	This/dt will/nn be/be more/ap or/cc less/ap our/pp$ general/jj method/nn for/in the/at second/od problem/nn ./.
If/cs (/( remember/vb this/dt is/bez an/at assumption/nn )/) the/at minimal/jj polynomial/nn for/in T/nn decomposes/vbz Af/nn where/wrb Af/nn are/ber distinct/jj elements/nns of/in F/nn ,/, then/rb we/ppss shall/md show/vb that/cs the/at space/nn V/nn is/bez the/at direct/jj sum/nn of/in the/at null/jj spaces/nns of/in Af/nn ./.
The/at diagonalizable/jj operator/nn is/bez the/at special/jj case/nn of/in this/dt in/in which/wdt Af/nn for/in each/dt i/nn ./.
The/at theorem/nn which/wdt we/ppss prove/vb is/bez more/ql general/jj than/cs what/wdt we/ppss have/hv described/vbn ,/, since/cs it/pps works/vbz with/in the/at primary/jj decomposition/nn of/in the/at minimal/jj polynomial/nn ,/, whether/cs or/cc not/* the/at primes/nns which/wdt enter/vb are/ber all/abn of/in first/od degree/nn ./.
The/at reader/nn will/md find/vb it/ppo helpful/jj to/to think/vb of/in the/at special/jj case/nn when/wrb the/at primes/nns are/ber of/in degree/nn 1/cd ,/, and/cc even/rb more/ql particularly/rb ,/, to/to think/vb of/in the/at proof/nn of/in Theorem/nn-tl 10/cd-tl ,/, a/at special/jj case/nn of/in this/dt theorem/nn ./.



Theorem/nn-tl-hl 12/cd-tl-hl ./.-hl
(/(-hl primary/jj-hl decomposition/nn-hl theorem/nn-hl )/)-hl ./.-hl

Let/vb T/nn be/be a/at linear/jj operator/nn on/in the/at finite-dimensional/jj vector/nn space/nn V/np over/in the/at field/nn F/np ./.
Let/vb p/nn be/be the/at minimal/jj polynomial/nn for/in T/np ,/, Af/nn ,/, where/wrb the/at Af/nn ,/, are/ber distinct/jj irreducible/jj monic/jj polynomials/nns over/in F/np and/cc the/at Af/nn are/ber positive/jj integers/nns ./.
Let/vb Af/nn be/be the/at null/jj space/nn of/in Af/nn ./.
Then/rb (/( A/np )/) Af/nn ;/. ;/.
(/( B/np )/) each/dt Af/nn is/bez invariant/jj under/in T/np ;/. ;/.
(/( C/np )/) if/cs Af/nn is/bez the/at operator/nn induced/vbn on/in Af/nn by/in T/np ,/, then/rb the/at minimal/jj polynomial/nn for/in Af/nn is/bez Af/nn ./.
Proof/nn-hl ./.-hl

The/at idea/nn of/in the/at proof/nn is/bez this/dt ./.
If/cs the/at direct-sum/nn decomposition/nn (/( A/at-tl )/) is/bez valid/jj ,/, how/wrb can/md we/ppss get/vb hold/nn of/in the/at projections/nns Af/nn associated/vbn with/in the/at decomposition/nn ?/. ?/.
The/at projection/nn Af/nn will/md be/be the/at identity/nn on/in Af/nn and/cc zero/nn on/in the/at other/ap Af/nn ./.
We/ppss shall/md find/vb a/at polynomial/nn Af/nn such/jj that/cs Af/nn is/bez the/at identity/nn on/in Af/nn and/cc is/bez zero/nn on/in the/at other/ap Af/nn ,/, and/cc so/cs that/cs Af/nn ,/, etc./rb ./.


	For/in each/dt i/nn ,/, let/vb Af/nn ./.
Since/cs Af/nn are/ber distinct/jj prime/jj polynomials/nns ,/, the/at polynomials/nns Af/nn are/ber relatively/rb prime/jj (/( Theorem/nn-tl 8/cd-tl ,/, Chapter/nn-tl 4/cd-tl )/) ./.
Thus/rb there/ex are/ber polynomials/nns Af/nn such/jj that/cs Af/nn ./.
Note/vb also/rb that/cs if/cs Af/nn ,/, then/rb Af/nn is/bez divisible/jj by/in the/at polynomial/nn p/nn ,/, because/cs Af/nn contains/vbz each/dt Af/nn as/cs a/at factor/nn ./.
We/ppss shall/md show/vb that/cs the/at polynomials/nns Af/nn behave/vb in/in the/at manner/nn described/vbn in/in the/at first/od paragraph/nn of/in the/at proof/nn ./.


	Let/vb Af/nn ./.
Since/cs Af/nn and/cc P/np divides/vbz Af/nn for/in Af/nn ,/, we/ppss have/hv Af/nn ./.
Thus/rb the/at Af/nn are/ber projections/nns which/wdt correspond/vb to/in some/dti direct-sum/nn decomposition/nn of/in the/at space/nn V/nn ./.
We/ppss wish/vb to/to show/vb that/cs the/at range/nn of/in Af/nn is/bez exactly/rb the/at subspace/nn Af/nn ./.
It/pps is/bez clear/jj that/cs each/dt vector/nn in/in the/at range/nn of/in Af/nn is/bez in/in Af/nn for/cs if/cs **ya/nn is/bez in/in the/at range/nn of/in Af/nn ,/, then/rb Af/nn and/cc so/rb Af/nn because/cs Af/nn is/bez divisible/jj by/in the/at minimal/jj polynomial/nn P/np ./.
Conversely/rb ,/, suppose/vb that/cs **ya/nn is/bez in/in the/at null/jj space/nn of/in Af/nn ./.
If/cs Af/nn ,/, then/jj Af/nn is/bez divisible/jj by/in Af/nn and/cc so/rb Af/nn ,/, i.e./rb ,/, Af/nn ./.
But/cc then/rb it/pps is/bez immediate/jj that/dt Af/nn ,/, i.e./rb ,/, that/cs **ya/nn is/bez in/in the/at range/nn of/in Af/nn ./.
This/dt completes/vbz the/at proof/nn of/in statement/nn (/( A/np )/) ./.


	It/pps is/bez certainly/rb clear/jj that/cs the/at subspaces/nns Af/nn are/ber invariant/jj under/in T/nn ./.
If/cs Af/nn is/bez the/at operator/nn induced/vbn on/in Af/nn by/in T/nn ,/, then/rb evidently/rb Af/nn ,/, because/cs by/in definition/nn Af/nn is/bez 0/cd on/in the/at subspace/nn Af/nn ./.
This/dt shows/vbz that/cs the/at minimal/jj polynomial/nn for/in Af/nn divides/vbz Af/nn ./.
Conversely/rb ,/, let/vb G/np be/be any/dti polynomial/nn such/jj that/cs Af/nn ./.
Then/rb Af/nn ./.
Thus/rb Af/nn is/bez divisible/jj by/in the/at minimal/jj polynomial/nn P/np of/in T/nn ,/, i.e./rb ,/, Af/nn divides/vbz Af/nn ./.
It/pps is/bez easily/rb seen/vbn that/cs Af/nn divides/vbz G/np ./.
Hence/rb the/at minimal/jj polynomial/nn for/in Af/nn is/bez Af/nn ./.



Corollary/nn-hl ./.-hl

If/cs Af/nn are/ber the/at projections/nns associated/vbn with/in the/at primary/jj decomposition/nn of/in T/np ,/, then/rb each/dt Af/nn is/bez a/at polynomial/nn in/in T/np ,/, and/cc accordingly/rb if/cs a/at linear/jj operator/nn U/np commutes/vbz with/in T/np then/rb U/nn commutes/vbz with/in each/dt of/in the/at Af/nn ,/, i.e./rb ,/, each/dt subspace/nn Af/nn is/bez invariant/jj under/in U/np ./.


	In/in the/at notation/nn of/in the/at proof/nn of/in Theorem/nn-tl 12/cd-tl ,/, let/vb us/ppo take/vb a/at look/nn at/in the/at special/jj case/nn in/in which/wdt the/at minimal/jj polynomial/nn for/in T/nn is/bez a/at product/nn of/in first-degree/nn polynomials/nns ,/, i.e./rb ,/, the/at case/nn in/in which/wdt each/dt Af/nn is/bez of/in the/at form/nn Af/nn ./.
Now/rb the/at range/nn of/in Af/nn is/bez the/at null/jj space/nn Af/nn of/in Af/nn ./.
Let/vb us/ppo put/vb Af/nn ./.
By/in Theorem/nn-tl 10/cd-tl ,/, D/nn is/bez a/at diagonalizable/jj operator/nn which/wdt we/ppss shall/md call/vb the/at diagonalizable/jj part/nn of/in T/nn ./.
Let/vb us/ppo look/vb at/in the/at operator/nn Af/nn ./.
Now/rb Af/nn Af/nn so/rb Af/nn ./.
The/at reader/nn should/md be/be familiar/jj enough/qlp with/in projections/nns by/in now/rb so/cs that/cs he/pps sees/vbz that/cs Af/nn and/cc in/in general/jj that/cs Af/nn ./.
When/wrb Af/nn for/in each/dt i/nn ,/, we/ppss shall/md have/hv Af/nn ,/, because/cs the/at operator/nn Af/nn will/md then/rb be/be 0/cd on/in the/at range/nn of/in Af/nn ./.



Definition/nn-hl ./.-hl

Let/vb N/nn be/be a/at linear/jj operator/nn on/in the/at vector/nn space/nn V/np ./.
We/ppss say/vb that/cs N/nn-tl is/bez nilpotent/jj if/cs there/ex is/bez some/dti positive/jj integer/nn R/np such/jj that/cs Af/nn ./.



Theorem/nn-hl 13/cd-hl ./.-hl

Let/vb T/nn be/be a/at linear/jj operator/nn on/in the/at finite-dimensional/jj vector/nn space/nn V/np over/in the/at field/nn F/np ./.
Suppose/vb that/cs the/at minimal/jj polynomial/nn for/in T/np decomposes/vbz over/in F/np into/in a/at product/nn of/in linear/jj polynomials/nns ./.
Then/rb there/ex is/bez a/at diagonalizable/jj operator/nn D/np on/in V/nn and/cc a/at nilpotent/jj operator/nn N/nn in/in V/nn such/jj that/cs (/( A/np )/) Af/nn ,/, (/( b/nn )/) Af/nn ./.
The/at diagonalizable/jj operator/nn D/np and/cc the/at nilpotent/jj operator/nn N/nn-tl are/ber uniquely/rb determined/vbn by/in (/( A/np )/) and/cc (/( B/np )/) and/cc each/dt of/in them/ppo is/bez a/at polynomial/nn in/in T/np ./.
Proof/nn-hl ./.-hl

We/ppss have/hv just/rb observed/vbn that/cs we/ppss can/md write/vb Af/nn where/wrb D/nn is/bez diagonalizable/jj and/cc N/nn is/bez nilpotent/jj ,/, and/cc where/wrb D/nn and/cc N/nn not/* only/rb commute/vb but/cc are/ber polynomials/nns in/in T/nn ./.
Now/rb suppose/vb that/cs we/ppss also/rb have/hv Af/nn where/wrb D'/nn is/bez diagonalizable/jj ,/, N'/nn is/bez nilpotent/jj ,/, and/cc Af/nn ./.
We/ppss shall/md prove/vb that/cs Af/nn ./.


	Since/cs D'/nn and/cc N'/nn commute/vb with/in one/cd another/dt and/cc Af/nn ,/, we/ppss see/vb that/cs D'/nn and/cc N'/nn commute/vb with/in T/nn ./.
Thus/rb D'/nn and/cc N'/nn commute/vb with/in any/dti polynomial/nn in/in T/nn ;/. ;/.
hence/rb they/ppss commute/vb with/in D/nn and/cc with/in N/nn ./.
Now/rb we/ppss have/hv Af/nn or/cc Af/nn and/cc all/abn four/cd of/in these/dts operators/nns commute/vb with/in one/cd another/dt ./.
Since/cs D/nn and/cc D'/nn are/ber both/abx diagonalizable/jj and/cc they/ppss commute/vb ,/, they/ppss are/ber simultaneously/rb diagonalizable/jj ,/, and/cc Af/nn is/bez diagonalizable/jj ./.
Since/cs N/nn and/cc N'/nn are/ber both/abx nilpotent/jj and/cc they/ppss commute/vb ,/, the/at operator/nn Af/nn is/bez nilpotent/jj ;/. ;/.
for/cs ,/, using/vbg the/at fact/nn that/dt N/nn and/cc N'/nn commute/vb Af/nn and/cc so/rb when/wrb R/np is/bez sufficiently/ql large/jj every/at term/nn in/in this/dt expression/nn for/in Af/nn will/md be/be 0/cd ./.
(/( Actually/rb ,/, a/at nilpotent/jj operator/nn on/in an/at n-dimensional/nn space/nn must/md have/hv its/pp$ T/np power/nn 0/cd ;/. ;/.
if/cs we/ppss take/vb Af/nn above/rb ,/, that/dt will/md be/be large/jj enough/qlp ./.
It/pps then/rb follows/vbz that/cs Af/nn is/bez large/jj enough/qlp ,/, but/cc this/dt is/bez not/* obvious/jj from/in the/at above/jj expression/nn ./.
)/) Now/rb Af/nn is/bez a/at diagonalizable/jj operator/nn which/wdt is/bez also/rb nilpotent/jj ./.
Such/abl an/at operator/nn is/bez obviously/rb the/at zero/nn operator/nn ;/. ;/.
for/cs since/cs it/pps is/bez nilpotent/jj ,/, the/at minimal/jj polynomial/nn for/in this/dt operator/nn is/bez of/in the/at form/nn Af/nn for/in some/dti Af/nn ;/. ;/.
but/cc then/rb since/cs the/at operator/nn is/bez diagonalizable/jj ,/, the/at minimal/jj polynomial/nn cannot/md* have/hv a/at repeated/vbn root/nn ;/. ;/.
hence/rb Af/nn and/cc the/at minimal/jj polynomial/nn is/bez simply/rb x/nn ,/, which/wdt says/vbz the/at operator/nn is/bez 0/cd ./.
Thus/rb we/ppss see/vb that/cs Af/nn and/cc Af/nn ./.



Corollary/nn-hl ./.-hl

Let/vb V/nn be/be a/at finite-dimensional/jj vector/nn space/nn over/in an/at algebraically/rb closed/vbn field/nn F/nn ,/, e.g./rb ,/, the/at field/nn of/in complex/jj numbers/nns ./.
Then/rb every/at linear/jj operator/nn T/np in/in V/nn can/md be/be written/vbn as/cs the/at sum/nn of/in a/at diagonalizable/jj operator/nn D/np and/cc a/at nilpotent/jj operator/nn N/nn-tl which/wdt commute/vb ./.
These/dts operators/nns D/nn and/cc N/nn are/ber unique/jj and/cc each/dt is/bez a/at polynomial/nn in/in T/np ./.


	From/in these/dts results/nns ,/, one/pn sees/vbz that/cs the/at study/nn of/in linear/jj operators/nns on/in vector/nn spaces/nns over/in an/at algebraically/rb closed/vbn field/nn is/bez essentially/rb reduced/vbn to/in the/at study/nn of/in nilpotent/jj operators/nns ./.
For/in vector/nn spaces/nns over/in non-algebraically/rb closed/vbn fields/nns ,/, we/ppss still/rb need/vb to/to find/vb some/dti substitute/nn for/in characteristic/jj values/nns and/cc vectors/nns ./.
It/pps is/bez a/at very/ql interesting/jj fact/nn that/cs these/dts two/cd problems/nns can/md be/be handled/vbn simultaneously/rb and/cc this/dt is/bez what/wdt we/ppss shall/md do/do in/in the/at next/ap chapter/nn ./.


	In/in concluding/vbg this/dt section/nn ,/, we/ppss should/md like/vb to/to give/vb an/at example/nn which/wdt illustrates/vbz some/dti of/in the/at ideas/nns of/in the/at primary/jj decomposition/nn theorem/nn ./.
We/ppss have/hv chosen/vbn to/to give/vb it/ppo at/in the/at end/nn of/in the/at section/nn since/cs it/pps deals/vbz with/in differential/jj equations/nns and/cc thus/rb is/bez not/* purely/rb linear/jj algebra/nn ./.



Example/nn-hl 11/cd-hl ./.-hl

In/in the/at primary/jj decomposition/nn theorem/nn ,/, it/pps is/bez not/* necessary/jj that/cs the/at vector/nn space/nn V/nn be/be finite/jj dimensional/jj ,/, nor/cc is/bez it/pps necessary/jj for/in parts/nns (/( A/np )/) and/cc (/( B/np )/) that/cs P/np be/be the/at minimal/jj polynomial/nn for/in T/nn ./.
If/cs T/nn is/bez a/at linear/jj operator/nn on/in an/at arbitrary/jj vector/nn space/nn and/cc if/cs there/ex is/bez a/at monic/jj polynomial/nn P/np such/jj that/cs Af/nn ,/, then/rb parts/nns (/( A/np )/) and/cc (/( B/np )/) of/in Theorem/nn-tl 12/cd-tl are/ber valid/jj for/in T/nn with/in the/at proof/nn which/wdt we/ppss gave/vbd ./.


	Let/vb N/nn-tl be/be a/at positive/jj integer/nn and/cc let/vb V/nn be/be the/at space/nn of/in all/abn N/nn-tl times/nns continuously/rb differentiable/jj functions/nns F/np on/in the/at real/jj line/nn which/wdt satisfy/vb the/at differential/jj equation/nn Af/nn where/wrb Af/nn are/ber some/dti fixed/vbn constants/nns ./.
If/cs Af/nn denotes/vbz the/at space/nn of/in N/nn-tl times/nns continuously/rb differentiable/jj functions/nns ,/, then/rb the/at space/nn V/nn of/in solutions/nns of/in this/dt differential/jj equation/nn is/bez a/at subspace/nn of/in Af/nn ./.
If/cs D/nn denotes/vbz the/at differentiation/nn operator/nn and/cc P/np is/bez the/at polynomial/nn Af/nn then/rb V/nn is/bez the/at null/jj space/nn of/in the/at operator/nn p/nn (/( ,/, )/) ,/, because/cs Af/nn simply/rb says/vbz Af/nn ./.
Let/vb us/ppo now/rb regard/vb D/nn as/cs a/at linear/jj operator/nn on/in the/at subspace/nn V/nn ./.
Then/rb Af/nn ./.


	If/cs we/ppss are/ber discussing/vbg differentiable/jj complex-valued/jj functions/nns ,/, then/jj Af/nn and/cc V/nn are/ber complex/jj vector/nn spaces/nns ,/, and/cc Af/nn may/md be/be any/dti complex/jj numbers/nns ./.
We/ppss now/rb write/vb Af/nn where/wrb Af/nn are/ber distinct/jj complex/jj numbers/nns ./.
If/cs Af/nn is/bez the/at null/jj space/nn of/in Af/nn ,/, then/rb Theorem/nn-tl 12/cd-tl says/vbz that/cs Af/nn ./.
In/in other/ap words/nns ,/, if/cs F/np satisfies/vbz the/at differential/jj equation/nn Af/nn ,/, then/rb F/np is/bez uniquely/rb expressible/jj in/in the/at form/nn Af/nn where/wrb Af/nn satisfies/vbz the/at differential/jj equation/nn Af/nn ./.
Thus/rb ,/, the/at study/nn of/in the/at solutions/nns to/in the/at equation/nn Af/nn is/bez reduced/vbn to/in the/at study/nn of/in the/at space/nn of/in solutions/nns of/in a/at differential/jj equation/nn of/in the/at form/nn Af/nn ./.
This/dt reduction/nn has/hvz been/ben accomplished/vbn by/in the/at general/jj methods/nns of/in linear/jj algebra/nn ,/, i.e./rb ,/, by/in the/at primary/jj decomposition/nn theorem/nn ./.


	To/to describe/vb the/at space/nn of/in solutions/nns to/in Af/nn ,/, one/pn must/md know/vb something/pn about/in differential/jj equations/nns ;/. ;/.
that/dt is/bez ,/, one/pn must/md know/vb something/pn about/in D/nn other/ap than/cs the/at fact/nn that/cs it/pps is/bez a/at linear/jj operator/nn ./.
However/rb ,/, one/pn does/doz not/* need/vb to/to know/vb very/ql much/ap ./.
It/pps is/bez very/ql easy/jj to/to establish/vb by/in induction/nn on/in R/np that/cs if/cs F/np is/bez in/in Af/nn then/rb Af/nn ;/. ;/.
that/dt is/bez ,/, Af/nn ,/, etc./rb ./.
Thus/rb Af/nn if/cs and/cc only/rb if/cs Af/nn ./.
A/at function/nn G/np such/jj that/cs Af/nn ,/, i.e./rb ,/, Af/nn ,/, must/md be/be a/at polynomial/jj function/nn of/in degree/nn Af/nn or/cc less/ap :/: Af/nn ./.
Thus/rb F/np satisfies/vbz Af/nn if/cs and/cc only/rb if/cs F/np has/hvz the/at form/nn Af/nn ./.
Accordingly/rb ,/, the/at '/' functions/nns '/' Af/nn span/vb the/at space/nn of/in solutions/nns of/in Af/nn ./.
Since/cs Af/nn are/ber linearly/rb independent/jj functions/nns and/cc the/at exponential/jj function/nn has/hvz no/at zeros/nns ,/, these/dts R/np functions/nns Af/nn ,/, form/vb a/at basis/nn for/in the/at space/nn of/in solutions/nns ./.